Stratigrafie

Geologie sedimentarnich panvi



Stratigrafie

* Dbiostratigrafie

 fyzicka stratigrafie
— litostratigrafie
— geneticka stratigrafie (alostratigrafie — uvazuje
alogenni fidici mechanismy, extrapanevni, opak
autogennich procesu, napt. autocykli¢nost
fluvialnich nebo deltovych sedimenti)

* napf. sekvencni stratigrafie



Stratigraphy Property

Lithostratigraphy lithology
Biostratigraphy fossils
Magnetostratigraphy magnetic polarity
Chemostratigraphy chemical properties
Chronostratigraphy absolute ages
Allostratigraphy discontinuities
Seismic stratigraphy seismic data
Sequence stratigraphy depositional trends

Depositional trends refer to aggradation versus
erosion, and progradation versus retrogradation.
Changes in depositional trends are controlled by
the interplay of sedimentation and base-level shifts.

FIGURE 1.3 Types of stratigraphy, defined on the basis of the
property they analyze. The interplay of sedimentation and shifting
base level at the shoreline generates changes in depositional trends in
the rock record, and it is the analysis and/or correlation of these
changes that defines the primary objectives of sequence stratigraphy.




-~ — - systems —

Formation A - e.g., a fluvial system sequence stratigraphic surfaces

[._] Formation B - e.g., a coastal system — — lithostratigraphic surfaces
E=_1 Formation C - e.g., a shallow-marine system

FIGURE 1.12 Conceptual contrast between lithostratigraphy and sequence stratigraphy. Sequence strati-
graphic surfaces are event-significant, and mark changes in depositional trends. In this case, their timing is
controlled by the turnaround points between transgressions and regressions. Lithostratigraphic surfaces are
highly diachronous facies contacts. Note that the system tract and sequence boundaries cross the formation
boundaries. Each systems tract is composed of three depositional systems in this example, and is defined by
a particular depositional trend, i.e., progradational or retrogradational. A sequence corresponds to a full cycle
of changes in depositional trends. This example implies continuous aggradation, hence no breaks in the rock

record, with the cyclicity controlled by a shifting balance between the rates of base-level rise and the sedimen-
tation rates.
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Sedimentology - processes
of sedimentary rock formation

(within the
confines of
individual
depositional
systems)

Sequence
Stratigraphy:
- processes

- correlation

- prediction

(generally
involving
depositional
system

Sedimentology: the scientific study of ‘
sedimentary rocks and of the processes by
which they form.

Stratigraphy: the science of rock strata - all

associations) characters and attributes of rocks as strata,

and their interpretation in terms of mode of
origin and geologic history.

Stratigraphy - correlation
and attributes of rock strata

FIGURE 1.2 Sequence stratigraphy and its overlap with the conventional disciplines of sedimentology and
stratigraphy (definitions modified from Bates and Jackson, 1987). When applied to a specific depositional
system, sequence stratigraphy helps to understand processes of facies formation, facies relationships, and
facies cyclicity in response to base-level changes. At larger scales, the lateral correlation of coeval depositional
systems becomes a more significant issue, which also brings in a component of facies predictability based on
the principle of common causality related to the basin-wide nature of the allogenic controls on sedimentation.




Academic applications: genesis and internal architecture of sedimentary basin fills
Industry applications: exploration for hydrocarbons, coal, and mineral resources

T

Sequence Stratigraphy 4——|

Integrated disciplines: T Main controls:

- Sedimentology Integrated data: - sea level change

- Stratigraphy | - outcrops - subsidence, uplift

- Geophysics - modern analogues - climate

- Geomorphology - core - sediment supply

- Isotope Geochemistry - well logs - basin physiography

- Basin Analysis - seismic data - environmental energy

FIGURE 1.1 Sequence stratigraphy in the context of interdisciplinary research—main controls, integrated
data sets and subject areas, and applications.




Energy flux
(environment)
— Tectonics VS.

l | Sediment supply l

Eustasy

Allogenic Sedimentation

T controls (depositional trends)

. l Accommodation T
— Climate

(space available for
sediments to fill)

FIGURE 3.1 Allogenic controls on sedimentation, and their relationship to environmental energy
flux, sediment supply, accommodation, and depositional trends (modified from Catuneanu, 2003). In any
depositional environment, the balance between energy flux and sediment supply is key to the manifestation
of processes of sediment accumulation or reworking. Besides tectonics, additional processes such as
thermal subsidence (crustal cooling), sediment compaction, water-depth changes, isostatic, and flexural
loading, also contribute to the total subsidence or uplift in the basin. Accommodation is affected by the
balance between energy flux and sediment supply (i.e., increased energy ‘erodes” accommodation; increased
sediment supply adds to the amount of available accommodation), but it is also independently controlled
by external factors such as eustasy and tectonism. At the same time, changes in accommodation controlled
directly by external factors may alter the balance between energy flux and sediment supply at any location
within the basin (e.g., deepening of the water as a result of sea-level rise lowers the energy flux at the seafloor).
The interplay of all allogenic controls on sedimentation, as reflected by changes in accommodation and

energy flux/sediment supply, ultimately determines the types of depositional trends established within
the basin.




Hierarchical order Duration (My)  Cause

First order 200-400 Formation and breakup
of supercontinents

Second order 10-100 Volume changes in
mid-oceanic spreading
centers

Third order 1-10 Regional plate
kinematics

Fourth and fifth order  0.01-1 Orbital forcing

FIGURE 3.2 Tectonic and orbital controls on eustatic fluctuations
(modified from Vail et al., 1977, and Miall, 2000). Local or basin-scale
tectonism is superimposed and independent of these global sea-
level cycles, often with higher rates and magnitudes, and with a
wide range of time scales.
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http://www.strata.geol.sc.edu/log-stacking.html
http://www.strata.geol.sc.edu/log-stacking.html
http://www.strata.geol.sc.edu/log-stacking.html

Stratigrafie - studuje stari a chronologické vztahy horninovych téles

SEKVENCNI STRATIGRAFIE

- studuje chronologické vztahy téles sedimentarnich hornin, které vykazuji urcitou
cyklicitu a jsou spojovdny do geneticky provdzanych celkl - sekvenci

Sekvencnéstratigraficky vyvoj je dan vztahem mezi

akomodaci a prinosem sedimentu




akomodacni prostor - prostor pro potencidlni akumulaci sedimentu

relativni zmény hladiny - projev zmén akomodacniho prostoru; hraji vyznamnou roli v

prostredich citlivych na hloubku vody (selfy, jezera,...)

fluvidlnich prostredich - akomodalni prostor kontrolovan spadovou krivkou reky
eolicka prostredi - akomodace ovliviiovdna geomorfologii, smérem vétru, prinosem

sedimentu a hladinou podzemni vody
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ZAKLADNE REAKCE SEDIMENTARNICH SYSTEMUI NA
RELATIVND ZMENY HLADINY.
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Foreshore Upper Lower
/ shoreface/ shoreface Offshore

Pelagic/Hemipelagic

High sea level
 Highstand systems tract




VYVOJ KLASTICKEHO SELFU V ZAVISLOSTI NA ZMENACH HLADINY

Stage 1 /—Erosion
_ Submarine fan
Sealevel fall: Forced regression I
 Formation of sequence boundary




Stage 2 Fluvial Estuarine
/ / Slope deposits

Low sea level \

* Lowstand systems tract



Stage 3 Condepsed facies

Pelagic/Hemipelagic
Rising sea level: Transgression

* Transgressive systems tract
e Maximum flooding surface




Stage 4 Upper Lower
Foreshore—\ /shoreface shoreface Offshore

Pelagic/Hemipelagic

High sea level: Aggradation and progradation

* Highstand systems tract



SEDIMENTARNI SEKVENCE

O stratigrafickd jednotka, vymezena na bdzi i na vrchu vyraznymi plochami

diskordance nebo jejich korela¢nimi ekvivalenty

Q reprezentuje obdobi sedimentace urcitého sedimentdrniho systému mezi
dvéma epizodami vyrazného poklesu hladiny

—sekvencni stratigrafie umoznuje rekonstruovat vyvoj hladiny

Sekvencni hranice - plocha predstavujici povrch vznikly béhem vyrazného

poklesu hladiny, ¢asto erozivni
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TRAKIY. .
SEDIMENTARNICH SEKVENCI

trakty (systems tracts)

Cdsti sekvence odpvidajici jednotlivym etapdm vyvoje hladiny

Trakt klesajici hladiny (FSST)




Types of shelf margin

Shelf break
margin

Steep slope at
shelf edge

Ramp margin

No distinct
shelf edge
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Types of shelf margin

Shelf break
margin

Steep slope at
shelf edge

Ramp margin

No distinct
shelf edge
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PARASEKVENCE

parasekvence - sukcese geneticky spjatych sedimentdrnich téles;
vymezena zdaplavovymi plochami
- smérem do nadloZi vykazuje zméléujici trend

(v malém méritku)
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SEDIMENTARNI SEKVENCE
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PARASEKVENCE - vnitrni
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PARASEQUENCE SET (set parasekvenci)

- skupina parasekvenci, které vykazuji urcity trend

(usporadani) dany dlouhodobymi zménami hladiny

- kazdy sekvenéni trakt (TST, HST,..) md svij

charakteristicky parasekvencni set
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Parasequence stacking pattern
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Ratio rale of depasiiion .
Rate of accommodation

Ratio rate of daposition <
Rate of accommaodation

Fatio rate of depoasiion =
Rate of accommodation

Van Wagoner et al. (1987)



KRIVKA RELATIVNICH ZMEN
HLADINY

PREDPOKLAD: krivka ma tvar sinusoidy
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STRATIGRAPHIC ARCHITECTURE

RELATIVE SEA- SHORELINE ARCHITECTURE
LEVEL
SLOW BASE LEVEL RISE TO STILL STAND:
ISOLATED RIBBONS TO LATERALLY
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v r\'. Mashchte
L] [
N "'

RSL LEVEL CURVE

A

K
.
o
ASL LEVEL CURVE

FEN
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BASE LEVEL FALL: VALLEY INCISION AND e PROGRADATION

¢
4 ."'
e

RSL LEVEL CURVE

Sequence Boundary

Fig. 7.11 Summary diagram illustrating the relationship between shoreface and fluvial architecture as a function of base level
change (after Shanley and McCabe, 1993). Detailed correlations suggest the timing of the incised-valley fill occurred after the
initial transgressive surface. For this reason Shanley and McCabe {1993) regard the valley-fill as “alluvial-transgressive’ deposits
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Peritidal Reefs and shoals

Shallow subtidal
Slope deposits

High sealevel

* Highstand systems tract




Karst surface of exposed shelf
Reefs and shoals

Slope deposits

Low sea level
* Lowstand systems tract
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PROXIMAL ‘ PROGRADATIONAL TRAJECTORY - KEEP-UP RESPONSE TO STILL-STAND AT LO W SEA LEVEL POSITION

| TIDAL FLATS, CHANNELS & BEACH | INNER SHELF/LAGOON REEFS | | HIGH ENERGY SHELF GRAIN SHOAL | SHELF MARGIN REEF | SHELF MARGIN SLOPE|
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PROXIMAL ‘ RETROGRADATIONAL TRAJECTORY - GIVE-UP RESPONSE TO LATE LOWSTAND & TRANSGRESSIVE SEA LEVEL RISES ‘ DISTAL

| RESTRICTED LAGOON or SHELF| [ INNER SHELF/LAGOON REEFS | | HIGH ENERGY SHELF GRAIN SHOAL | | SHELF MARGIN REEF | | SHELF MARGIN SLOPE |
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| CARBONATE COASTAL , SHELF & MARGINAL SETTINGS |
[PROXIMAL | | PROGRADATIONAL TRAJECTORY - KEEP-UP RESPONSE TO STILL-STANDS AT HIGH & LOW SEA LEVEL POSITIONS |

[TIDAL FLATS, CHANNELS & BEACH | | INNER SHELF/LAGOON REEFS| | HIGH ENERGY SHELF GRAIN SHOAL | | SHELF MARGIN REEF | | SHELF MARGIN SLOPE]
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Sealevel rises
(water depth
Increases)

From the point of
view of a crab on
the sea floor...

Subsidence
of sea floor

(water depth
Increases)
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Local tectonics

e.g. v _

| Relative sea
level rise

NN



 Changes in sea
water temperature
cause thermal
expansion/contraction

Sea water temperature




Exchange with water on continents

Centimetres to

metres change over
o hundreds to

Groundwater thousands of years




Continental ice caps

g e —— g * Increase in ice volume
e Decrease inice A4 ‘ lowers sea level
volume raises -~
sea level ;

Around 100 m sea
level change over
100 ka




Global scale thermo-tectonic

* Formation and
breakup of
supercontinents

 Changes in rates of
formation of ocean
crust

10-100 m sea level

change over
10-100 Ma



Slow mid-ocean ridge spreading

.

Oceanic crust cools
and contracts

Fast mid-ocean ridge spreading
Sea water displaced onto

continental shelves

.. . _ R

More hot, buoyant oceanic crust
occupies more space in the
ocean basin



Changes in the eccentricity of the Earth’s orbit around the Sun
100 ka cycle




Changes in the obliquity (tilt) of the Earth’s axis of rotation
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Precession of the axis of rotation
22 ka cycle

Tilt of the axis changes
from being inclined
towards the Sun to
being inclined away

from the Sun



Continental ice caps

g e —— g * Increase in ice volume
e Decrease inice A4 ‘ lowers sea level
volume raises -~
sea level ;

Around 100 m sea
level change over
100 ka
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HLADINY ﬂm
Krivka kratkodobych zmeén
Krivka dlohodobych zmeéen W W

Krivka relativnich fall
zmeén hladiny '

rise

» [IME




0

_ —
Cenozoic
_______________________ 5
100 10
Mesozoic Felling :: 15
200 Sea level :
— I
Rising .
1 25
300 :
/ v 30
Phanerozoic . 35
400 2nd order cycles .
N 140
500 . =
' 50
| 55 -
Global Sea level curves \ 60 -

~=3rd ordef
cycles




SB3
AST

BST
FST

SB2
AST

BST

FST i

SB1——

] i R——

SB2

SB1 — {8

SB3—E=

SB2 —

SB1-—-""”

RELATIVE BASE-LEVEL
OSCILLATION

50-100 m




>

Positive/rising

<

-
L
>
-
L
)
<
m
QO
T
Q.
&
9
b
&
—
w
o
—
®
2]
<

Rusty Member
depaosition

Base Trail Member
unconformity
Rock Springs v
Formation /

Negative/falling

Change of
fluvial style

Almond Formation
deposition

Base Canyon Creek Member
unconformity

Change of
fluvial style

Canyon Creek Member

deposition

e

Trail Member
deposition







"THE TYPICAL GEOMETRIC RELATIONSHIPS
OF SYSTEMS TRACTS
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Figure 28. Interpreted seismic reflection profile E-E' (as shown in Figure 27).

Aggradational fourth-order SeqSs 8 (115.5-115 Ma) and 12 (~112.75-112 Ma) and progra-

dational fourth-order sets 9 (115-~114.3 Ma) and 11 (113.5-~112.75 Ma) are shown.
Because of low subsidence rates, SeqS 10 (114.3-113.5 Ma) displays uncharacteristic

progradational stacking patterns on this profile. These fourth-order SeqSs, deposited on
rising and falling limbs of third-order eustatic cycles (see Figures 32, 33), are systems
tracts within third-order CSegs 7\8, 9\10, and 11\12. Fourth-order Seq boundaries are high-
ly erosional and were correlated throughout the basin. Speculation that Seqs represent

autocyclic delta lobe shlltlng was proved incorrect because they are bounded by true ero-
sional unconformities (not flooding surfaces) and because each Seq is composed of well-
defined systems tracts. See wireline logs of borehole 4 with Seq and depositional systems
interpretations in Figure 30.
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Figure 28. Interpreted seismic reflection profile E-E' (as shown in Figure 27). progradational stacking patterns on this profile. These fourth-order SeqSs, deposited on autocyclic delta lobe shifting was proved incorrect becau
Aggradational fourth-order SeqSs 8 (115.5-115 Ma) and 12 (~112.75-112 Ma) and progra- rising and falling limbs of third-order eustatic cycles (see Figures 32, 33), are systems sional unconformities (not flooding surfaces) and becaus
dational fourth-order sets 9 (115-~114.3 Ma) and 11 (113.5-~112.75 Ma) are shown. tracts within third-order CSeqs 7\8, 9\10, and 11\12. Fourth-order Seq boundaries are high- defined systems tracts. See wireline logs of borehole 4 w
Because of low subsidence rates, SeqS 10 (114.3-113.5 Ma) displays uncharacteristic ly erosional and were correlated throughout the basin. Speculation that Seqs represent interpretations in Figure 30.
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flooding sufaces  Maximum Flooding Surface

fluvial or estuarine

sandstones in incised valleys

coastal-plain sandstones

and mudstones ,
Transgressive Surface , -e Bounda
. shallow-marine sandstones "equence boundary

. shell mudstones



subaerial erosion as
rivers incise and
form an unconformity

subaerial erosion of
previously marine areas
forming an unconformity
d

start of relative /

I sea-levelfall §

(a/fter 9

%;

N ' 4

bypass of sediment down the /
continental slope when relative
sea-level drops below the shelf break

;X .
correlative conformity forms
where sedimentation
is continuous




FLUVIAL, DELTAIC & SHELF MARGIN SETTINGS

LOWSTAND
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STACKING
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grain size arain iz rain size
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grain size grain size graln size grain size
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HIGHSTAND
CLASTIC
STACKING

FLUVIAL, DELTAIC & SHELF MARGIN SETTINGS

CHAMMEL-PCOINT BAR |PHGGF{ADING COASTAL PLAIM | PROGRADING DELTA MARGIN |
alluvial or fluvial

qgrain size graim size grain size

Stacking
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[] MARME SHALE
[] PROXIMAL FAN
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feeder channel :

subaerial
delta plain

- Fluvial sands and gravels

Locustrine clays and
prodelta heteroliths

Locustrine clays
of Libkovice Member
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TECTONIC SUBSIDENCE +

égﬁg:gﬁgﬁgg"sggﬁégw Lateral migration of the system
OVERLYING COAL SEAM due to decrease of compaction potential of peat

Lacustrine clays




1) Delta body

Lake level

Flooded
peat swamp

" Prodelta and lacustrine

2)

Lake leve!

3) Lateral migration of the sequence

Lake leve!

deposits

1> Peat swamp

Increasing of

compaction potential
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