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trace elements

B, Ba — Boron or Barium in clay minerals as an paleosalinity indicator

Zr, Ti, Ti/Al — proxies for terrestrial input and altered alkaline basic volcanism;
Vanadium or other could be used for discrimination of terrigenous and
volcanogenic Ti, V usually correlates with Ti in volcanogenic rocks

Rb — proxy for clay

Ba, Pb — proxy for feldspars

environmental magnetism

Fe minerals — proxy of terrestrial input, weathering intensity (magnetite,
hematite, limonite, sulphides, ... could be distinguished)



stable isotopes

5180 [%o] = ((180/160, . -180/180¢y,0p)/ 180/"80gy0py)* 1000

sample

5'3C [%o] = ((*3C /12C_,__. -13C /12Cppg)! 13C /12Cppg)*1000

SMOW, PDB - standards

sample

isotopic fracionation processes in hydrosphere — changes of isotopic composition
of water with temperature, lattitude, ice stratigraphy

carbon cycle

carbonate systems, stratigraphy of pelagic carbonates, record of temperature and
climatic changes

513C organic matter — types of metabolism of aquatic and terrestrial plants
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Fig. 3. Carbon and oxygen isotopic composition of peritidal limestones and paleosols in the lower Viséan in the Flémalle-
Haute (A) and Walhorn (B) quarries. The investigated paleosols occur at the top of the Terwagne Formation.
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Figure 2. Isotopic composition of (a) Mescal and (b) Beck Spring cherts. Line A represents
cherts in equilibrium with Standard Mean Ocean Water (SMOW), from Knauth and Epstein
(1976). Temperatures of chert crystallization are from Knauth and Epstein (1976). Domains are
strongly elongated in direction roughly parallel to meteoric water line. Early coastal chert § values
plot closest to line A; secondary silica values plot farthest away. Whole-rock samples include
both early diagenetic and secondary chert.
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Fig. 9-3. Carbon isotopic composition of photosynthetically fixed carbon A. Terrestrial
plants. B. Known C3 and C; plants. C. Known CAM plants. D. Algae. E. Aquatic plants.
F. Marine plants exclusive of plankton, G. Lacustrine plants exclusive of plankton. H.
Marine plankton. Data from Bender (1968, 1971), Bender et al. (1973), Brown and Smith
(1974), Craig (1953a), Deevey and Stuiver (1964), Degens et al. (1968b), Eadie (1972),
Lerman et al, (1969), Lowdon and Dyck (1974), Oana and Deevey (1960), Osmond et al.
(1975), Parker (1964), Sackett et al. (1965, 1974a), Smith and Brown (1973), Smith and

Epstein (1970, 1971), Stahl (1968a), Troughton (1972), Wickman (1952), and Williams
and Gordon (1970).
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Strontium isotopes — stratigraphy, paleoenvironments
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RELATIVE FLUCTUATIONS
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Fig. 5.15. Relationship between Sr isotopic variation in the oceans and sea level
fluctuations through geologic time. Chauduri and Clauer (1986) were able to show that sea-
level fluctuations and related hydrothermal seawater circulation are not always the majpr
influences on the Sr isotopic composition of seawater. The authors postulate an additional
source of Sr that supplies the oceans with relatively more radiogenic Sr groundwater.
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Fig. 5.3. The precise 875¢/86sr isotopic analyses of DePaolo and Ingram (1985) on
stratigraphically well constrained marine carbonates allowed the reconstruction of a single
clear trend in Tertiary seawater isotopic variation for the first time.
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Cathode luminiscence (CL)

principles: excitation by electron beam, emission of radiance
Mn2* luminiscence activator, Fe2* luminiscence inhibitor in carbonates

study of carbonate and quartz cements, recrystallization processes - cement
stratigraphy, fluid composition and migration history

provenance of clastic material — quartz typology
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CATHODOLUMINESCENCE MICROSCOPY 183

Fig. 6.3. Drawings made from photographs of CL in limestones from the Dinantian (Lower Carboniferous) of Ireland.

(a) Coarse sparry calcite mass seen in transmitted light. (b) Same view but with cathodoluminescence. showing a void

developed in micrite (coarse stipple), with a cement sequence of radial fibrous spar (light stipple). non-luminescent ferroan

calcite (black) and brightly luminescent outer zone (white). The void fill is completed by dolomite (hashures). (¢) Medium-

grained blocky spar mosaic seen under transmitted light is revealed under cathodoluminescence (d) as a ncomorphosed, 25
brightly luminescent biomicrite with gastropods, bivalves and foraminifera which are weakly luminescent.
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Fig. 6.4. Paired photomicrographs of limestone thin sections, with transmitted light view to the left and
cathodoluminescence view to the right. All from the Dinantian (Lower Carboniferous) of South Wales. (a), (b) Pwll-y-
Cwm Oolite. Calcite cement fill of bivalve mould, showing details of crystal growth by fine luminescent and non-
luminescent growth bands. (c), (d) Blaen Onneu Oolite. Syntaxial calcite overgrowth on an echinoid spine, showing
preferential nucleation on the crystallographically suitable substrate. CL reveals detail of the internal structure of the
recrystallized spine. Changes in CL intensity in the overgrowth cement are due to varying concentrations of Fe**' quencher.
(e), (f) Gilwern Oolite. Details of the internal structure of ooids is better revealed by CL. Thin, non-luminescent calcite
cement fringes occur on the ooids, followed by brightly-luminescent microspar associated with calerete formed during
subaerial exposure. Photographs by courtesy of Dr M. Raven.
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CATHODOLUMINESCENCE MICROSCOPY 185




. 6.5, Paired photomicrographs of sandstoncs from North Sea cores, transmitted light view to the left and CL view to
e right. (a). (b) Medium-grained sandstonc with a carbonate cement is seen under CL to have a fairly high fossil content.
mainly echinoderms: crinoid fragments and an echinoid spine (top left) provide substrates for large, zoned overgrowths

which have occluded the primary porosity. (¢). (d) Coarse sandstone with non-luminescent authigenic quartz overgrowths
on violet-luminescing quartz grains. A subsequent zoned calcite cement is being dissolved by kaolinite (white on picture,
royal blue CL). (¢). (f) Violet luminescing (V) and brown (B) quartz grains showing a mixture of metamorphic and igneous
sources. A sparry calcite cement (8) is suffering dissolution by brightly-luminescing kaolinite (K)
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Fig. 5.1. The seawater 37Sr/86Sr and Mg/Sr ratios near the ‘Galapagos spreading center’
(Pacific) show clearly that local seawater has been influenced by mantle Sr. If all the Mg in
this mixing system derives from seawater it can be assumed that the hydrothermal fluid
system uncontaminated with seawater must show a similar 87Sr/86Sr ratio to basalt, i.e.
0.703. A simple correlation between water chemistry and temperature (arrows) allows the
temperature of the hydrothermal fluid phase to be determined at 340 °C. (Albaréde et al.

1981)
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Figure 1. Strontium, carbon, and oxygen isotope curves for Kapp Starostin Formation, West Spitsbergen. Large black squares denote brachiopod
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Fig. 9-15. Carbon isotopic composition of CH; from various sources. A. Coal gases. B.
Methane associated with petroleum. C. Soil gases. D. Glacial drift gases. E. Marsh gases.
F. Lake sediments. G. Marine sediments. Data from Colombo et al. (1968, 1970a, b),
Dubrova and Nesmelova (1968), Galimov (1969), Lebedev (1964), Lebedevet al. (1969),
Oana and Deevey (1960), Silverman (1964a, b), Stahl (1968a, b), Teichmiiller et al.

(1970), Vinogradov and Galimov (1970), Wasserburg et al. (1963), and Fig. 9-12.



