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Figure 1.1 A well log. Representation of the first ‘log’ made
at Pechelbronn, Alsace, France, in 1927 by H. Doll. (From
Allaud and Martin, 1976).
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Table 1.1 Classification of the common wireline geophysical well measurements (in ‘open hole’).

Log Type Formation parameter measured

Mechanical measurements Caliper Hole diameter

Spontaneous measurements Temperature Borehole temperature
SP (self-potential) Spontaneous electrical currents
Gamma ray Natural radioactivity

Induced measurements Resistivity Resistance to electrical current
Induction Conductivity of electrical current
Sonic _ Velocity of sound propagation
Density Reaction to gamma ray bombardment
Photoelectric Reaction to gamma ray bombardment
Neutron Reaction to neutron bombardment
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+ Semi-quantitative and quantitative uses

- (Essentially) qualitative use
* Strictly quantitative
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Figure 6.2 Formation conductivity - schematic. The electrical -
current is restricted to the formation fluids (formation water):
the matrix is non-conductive.



Table 6.1 The principal uses of the resistivity and conductivity (induction) logs.

Discipline Used for Knowing
Quantitative Petrophysics Fluid saturations: Formation water resistivity (R_)
Formation (S,) Mud-filtrate resistivity (R_,)
Invaded zone (S, ) Porosity (¢) (and F)
i.e. detect hydrocarbons Temperature (7))
Semi-quantitative Geology Textures Calibration with laboratory sample:
and Qualitative —
Lithology Mineral resistivities
Correlation
Sedimentology Facies, Gross lithologies
Bedding characteristics
Reservoir geology Compaction, Normal pressure trends
overpressure and
shale porosity
Geochemistry Source rock identification Sonic and density log values
Source rock maturation Formation temperature




30 coo 0.033
ot
sa‘“‘a
E /‘
o
£ /
E 20 000 0.05
>
=
2
o
= (@
(@ NS
z e:a'
8 10 000 0.10
</ |e
/o s
o/ 03
0 [» )
0 100 000 200 000 300 Q00

CONCENTRATION NaCl ppm
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Table 6.2 Some typical formation-water salinities.

Origin Total salinity Type R*
(ppm) ohm m%m

Sea water 35,000 0.19

Lagunillas,

Venezuela 7548! Fresh 0.77

Woodbine,

E. Texas 68,9641 Saline 0.10

Burgan,

Kuwait 154,388 Saline 0.053

Simpson sd.,

Oklahoma 298,4977 Very Saline  (0.04)**

"From Levorsen (1967)

*Approximate R_ (formation-water resistivity) at 24°C (75°F).

**Near the saturation limit.
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Figure 6.4 Schematic illustration of three formations which
have the same porosity but different values of formation
resistivity factor, F. The role of the matrix is evident: less at
low values of F (top), greater at high values of F (bottom).
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This figure should be compared to Figures 6.4 and 6.5 (modified from Nurmi, 1984).
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the last case, no porosity.
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Figure 6.29 The effect of pyrite on induction logs. At high
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log resistivity values are significantly lowered (re-drawn,
modified from Theys, 1991, attributed to Clavier et al., 1976).
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Figure 6.31 Subtle textural and composi-
tional variations in shallow marine shales
indicated on the resistivity logs.
Compositional changes are noted in the
organic matter content and in the amount
of silt. Textural variation is seen in the
fine lamination of the organic rich shales

which causes distinctive, low resistivities.

Note the separation between the shallow
(SFL) and deep (ILd) devices (see text).
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Figure 6.32 Correlation using deep induction logs (resistivity plots). The interval is one of thick, seemingly characterless, marine
shales. The logs show persistent, subtle changes which allow excellent correlation over a distance of 30km.
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Figure 6.35 A resistivity map of the middle and lower Ireton.
Devonian reef complex, Canada. The reefs are surrounded by
a ‘resistivity gradient’. (Redrawn from McCrossan, 1961).
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Figure 6.36 Shale resistivity trends with depth. The example
shows normal compaction trends from the Gulf Coast
1, Oligocene-Miocene; 2, 3, Miocene, Louisiana. (Redrawn

from Magara, 1978, after Hottman and Johnson, 1965). 23
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Table 7.1(a) Principal uses of the gamma ray log.

Discipline Used for Knowing
Quantitative Petrophysics Shale volume (Vsh) gamma ray (max)
gamma ray (min)
Qualitative Geology Shale (shaliness) gamma ray (max)
gamma ray (min)
Lithology typical radioactivity
values
Mineral identification Mineral radioactivity
Sedimentology Facies Clay/grain size relationship
Sequence Stratigraphy Parasequence & condensed Clay/grain size & organic
sequence identification matter/radioactivity relationships
Stratigraphy ' correlation -

Unconformity identification
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Figure 7.9 Repeatability of the spectral gamma ray. Precise
repeatability is generally poor but it should be noted that the
quantities being detected are very small.
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Figure 7.10 The etfect of KCl in the drilling mud on gamma
ray values. Well 1, with ordinary mud, well 2 with KCl mud.
The formation values should be the same. A, is the difference
created by the KCl content. The wells are 3km apart.
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Figure 7.11 ‘Black shale’ radioactivity. A spectral gamma ray log over the Upper Jurassic black shales of the North Sea showing
the high uranium contribution.

g



Table 7.12 Thorium-bearing heavy minerals (Serra et al., 1980).

Composition ThO, content (%)
Thorte Th, Si, O, 25-63
Monazite Ce, Y, La, PO, 4-12
Zircon Zr, 81, 0, less than 1
Uranium ppm Thorium pm
Zircon 300-3000 100-2500
Sphene 100-700 100-600
Epidote 20-50 50-500
Apatite 5-150 2-150
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Table 7.15 Potassium content of some common detrital materials (from Serra, 1979;

Edmundson et al., 1979; Dresser Atlas, 1983; Schlumberger, 1985).

% potassium Average - Gamma ray value
Mineral species by weight % (API)
“ Glauconite* 32-58 4.5 75 - 90!
g Muscovite 7.9-9.8 9.8 140* — 270
Botite 6.2-10.1 8.7 90" - 275
%_ Microline 10.9-16 16 220 — 2801
= Orthoclase 11.8- 14 14 220 — 280"
6 9
*Detrital or authigenic

'For 8in hole, 1.2g/cm® mud, 3%in Nal scintillator
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Figure 7.21 Potassium salts giving very high peaks of radioactivity in an evaporite sequence. (The lithology comes from an
interpretation of combined logs and cuttings). Permian, North Sea.
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Figure 7.28 Thorium/potassium, Th/K ratio changes in shales, associated with climatic variation. High ratios are associated with a
humid climate (abundant kaolinite) low values with an arid climate (abundant illites). Westphalian and basal Permian, central UK.
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Figure 7.29 Thorium/potassium, Th/K ratios in silts and sands associated with change in grain size. Thorium is relatively more
abundant in coarser grained fractions when sediment source is constant (Namurian outcrop, Co. Clare, Ireland, from Myers, 1987).
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