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overview

diagenesis of grains — mikrobial micritization, borings, recrystalization;
argonite (A), high-Mg calcite (HMC) - low-Mg calcite (LMC)

cementation — pore fluids supersaturated CaCO3, mineralogy of
cements depends on PCO2, Mg/Ca ratio

neomorphism — recrystalization — change of mineralogy and/or
structure

dissolution — carstification, pressure dissolution, stylolites

compaction

dolomitization, dedolomitization

diagenetic environments — meteoric vadose, meteoric phreatic,
marine phreatic, burial



diagenetic environments
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Fig. 7.2 Diagenetic environments fo - an isolate: - latform,
atoll or shelf margin, where an island is present with a
freshwater lens. With increasing depth, seawater will become
less saturated with respect to CaCQOj; so that aragonite may be
dissolved and calcite precipitated, and eventually dolomite
may be precipitated. This part of the model could apply to any
platform or shelf margin. Depths will depend on the
saturation state of seawater at the time.



marine diagenesis - overview

present-day cements

intertidal-subtidal — beachrock; A, HMC tmely — needle/accicular fringe
surrounding grains, perpendicular to grain surface; phreatic — isopachous; HMC
dark mikritic grain coatings, pore fillings; grain micritization; cement sources: a)
phys.-chem. precipitation during evaporation on tidal flat, b) biochem. microbial
precipitation (algal photosynthesis, bacterial calcification, decay of organic matter)

shallow subtidal — lagoons — microbial micritization; higher energy — cementation,
hardgrounds; cements: needle/accicular A, micritic HMC — grain coatings,
peloidal structures, surface crusts; reefs — high variability of cement types

deep water cementation — up to 3,5 km depth, impregnation by phosphates and
Fe,Mg oxides; Bahamas - cements: micritic LMC, deeper water - nodularization;
warm undercurrents: thin crusts, nodules of lithified pelagic material, needle A and
mikritic A cement; cementation — low sedimentation rates, water-sediment
interaction (but not with pore fluids)

present-day marine dissolution — higher lattitudes — low CaCO3 saturation —
dissolution of bioclasts in first 100s m depth 5
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Fig. 4.50 Common types of fibrous calcite. After Kendall
(1985).
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Fig. 7.9 Oolitic sand cemented in the submarine environment

to form a hardground which was then bored.

Photomicrograph shows thin isopachous fringe of fibrous

calcite around ooids and then micrite partly filling the

intergranular porosity. The micrite may be an internal

sediment or in part a cement. The ooids, micrite and fibrous

calcite are cut by a boring which is itself filled with micrite.

The early cementation prevented any compaction of this oolite

which has grains in point contact. Middle Jurassic, 11
Cotswolds, UK.



Fig. 7.8 Marine cement in a Triassic reef, Hafelekar, Austria.
Isopachous layers of fibrous calcite cementing fore-reef debris
and known locally as ‘Grossoolith’. Lens cap 6 cm diameter.
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cement mineralogy
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dissolution
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Fig. 7.20 Mixing corrosion effect. The solid curve shows the
solubility of CaCOj3 with respect to the total CO; in solution.
If two liquids, A and B are mixed, an undersaturated solution
results, C. It evolves by dissolution of calcite to equilibrium at
D. From various sources.
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ig. 7.21 Vertical variation of
alinity, Pco,, and the saturation
1dices of aragonite, calcite and
'olomite through the meteoric—
1arine mixing zones within a ‘blue
ole’, Andros Island. After Smart
t al. (1988).
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Low Mg calcite

Aragonite High Mg calcite

Fig. 7.22 Triangular diagram showing the typical
mineralogical evolution of Quaternary marine sediments
during prolonged meteoric diagenesis. Stippled area
represents range of marine sediments. I, initial cementation by
low-Mg calcite. 11, loss of Mg from high-Mg calcites. 111,
dissolution of aragonites and cementation by low-Mg calcite.
Modified from Tucker (1981).

19



marine diagenesis

diagenesis in sedimentary record

early d. — on the seafloor or close to sediment surface; late d. — burial
diagnostic features of marine cements: 1) early (1st generation), 2)
Isopachous fringes surrounding grains, 3) needle/accicular/prismatic
structure, 4) following generatin is typically sparite

aragonite cements — usually calcitised, isopachous fringes

calcite cements — accicular (needle, prismatic) calcite, perpendicular
to substrate; reefs — micritic and peloidal HMC; hardgounds —
syntaxial overgrowths, equant sparite — both also typical for meteoric
diagenesis and burial

processes: mikritic cement — rapid nucleation, slow accretion,;
needle/prismatic — faster accretion perpendicular to substrate; equant
sparite — very slow nucleation
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burial diagenesis
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Fig. 7.30 (A) Generalized salinity variations with depth for
formation waters from the Alberta, Illinois, Louisiana Gulf
Coast and Michigan Basins (B) Generalized variations in
chemical composition of subsurface brines in the Illinois
Basin with increasing chlorinity. Values are normalized with

respect to seawater of the same chloride content. From Hanor

(1983).
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meteoric diagenesis

dissolution (secondary porosity, carstification), cementation, pedogenesis
vadose zone — upper — infiltration, lower — percolation

phreatic - syntaxial overgrowths, equant spar cements

vadose — asymmetric: meniscus, gravity cements

isopachous cement — phreatic early stage
asymmetrical — vadose

syntaxial overgrowths

calcite replacing aragonite — sparry cements

LMC infilling pores late stage
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Fig. 7.27 Common cement
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Fig. 7.24 Contrasting styles of karstification, meteoric cementation and porosity evolution in Early Carboniferous oolitic
limestones from south Wales. Based on Hird & Tucker (1988) and Wright (1988).
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kalcite spar

equigranular mosaic, syntaxial overgrowths, poikilotopic spar

-meteoric phreatic zone, sourc of CaCO, — pore fluids

-burial, source of CaCO, — pressure solution

cement stratigrafphy, catode luminiscence, stable isotopes, fluid inclusions
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prismatic spar

~equant spar _
equicrystalline mosaic

Fig. 7.32 Calcite spar: skeiches illustrating the common

rvpes.
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Fig. 7.14 Fibrous calcite marine cement (primary) around
ooids (also primary calcite) with prominent polygonal
compromise boundary between fringes. These more acicular
crystals are in optical continuity with radial-fibrous
crystallities of the ooids. Jurassic Smackover Formation,
subsurface Arkansas. Crossed polars.

35



neomorphism

A->C, C->C, dissolution + reprecipitation

aggradational neomorphism — following crystal phase is coarser-grained; a) micrite
—> microspar, pseudospar, b) calcitization of aragonite

calcilutites: microspar (4-10 mm), pseudospar (10-50 mm); irregular uneven
grain boundaries, irregular grainsize, clastic grains floating in spar;
pseudobrecciation

calcitization of A grains and cements — druse spar; a) relics of original bioclast
structures, b) irregular mosaics of greins with different sizes, ¢) brownish coloring
of neomorphic spar (relics of org. matter) - pseudopleochroism

degradational neomorphism — grain size is decreasing; rare; usually during
metamorphism or deformation
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Fig. 7.41 Neomorphic spar. (A)
Patches of microspar in a micritic
pelagic limestone resulting from
aggrading neomorphism. Upper
Devonian, West Germany. (B)
Coarse microspar mosaic of equant
crystals with floating skeletal debris.
Pseudobreccia, Lower
Carboniferous, northwest England.
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compaction

mechanical c. — early stages of diagenesis; reorganizing particles to more
fitted/stable fabric; deformation of large clasts, cements, mikritic overgowths;
bioklastic wackestone - b. packstone

chemical c. — deeper burial (hundreds of m); matrix dissolution - fitted fabric;
stylolites, dissolution seams
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P 92

a. cubic b. rhrombohedral c. point
packing packming contacts

(48% porosity) (26% porosity) in thin section

1D

d. concavo- e. rnechanncal f. plastic
convex fracture of deformation
contacts grains of grains

g. sutured . late stylolites . dnssolutlon
contacts cuttlng grains seams
between grains and spar

Fig. 7.37 Grain packing, grain contacts and mechanical and

chemical compaction textures in limestones.
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Fig. 7.38 Concavo-convex and microstylolitic contacts in

Smackover Oolite, Jurassic, Louisiana subsurface. Notice
also the spalling and [racture of thin oolitic coating off the
central grain. Intergranular porosity later filled by very
coarse, poikilotopic calcite spar (white).
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Fig. 7.39 Dissolution seams with

insoluble residue (clay) concentrated
along them. Upper Devonian, Griotte
(pelagic limestone), southern France.
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Ctrcumgranular Crust Cement
£ “‘-’(Phreatlc)“ S

PORE SPACE CEMENT  GRAINS

Fig.3.6. Cement distributional patterns as a function of diagenetic environment. A. In the vadose zone,
cements are concentrated at grain contacts and the resulting pores have a distinct rounded appearance
due to the meniscus effect . The resulting cement pattern is termed meniscus cement. B. In the vadose
zone immediately above the water table there is often an excess of water that accumulates at the base
of grains as droplets. These cements are termed microstalactitic cements. C. In the phreatic zone, where
pores are saturated with water, cements are precipitated as circumgranular crusts.
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Fig. 3.8. Timing of diagenetic events by petrographic relationships. A. Involvement of isopachous
cement in compaction indicates that cement was early. B.Cement that encases compacted grains and
spalled isopachous cement is relatively late. C. Cross cutting relationships of features such as fractures
and mineral replacements are useful. Calcite filling fracture is latest event, replacement anhydrite
came after the late poikilotopic cement, but before the fracture, while the isopachous cement was the
earliest diagenetic event.
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ORIGINAL SEDIMENT

a aragonite

c calcite

HMC high Mg calcite
LMC low Mg calcite
v void

m micrite envelope
d drusy calcite spar
p poikilotopic calcite
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Fig. 7.42 End-member diagenetic models for marine,
meteoric and burial environments. Model A is for marine
diagenesis in a poorly agitated or stagnant location where
grain micritization is dominant. Model B is for marine
diagenesis in a high-energy location where there is much
cementation through seawater pumping. Model C is for
meteoric diagenesis in an active zone of much dissolution,
whereas model D applies to a zone of more CaCQOj-saturated
meteoric water where cementation and grain teplacement are
features. Model I applies to the burjal diagenesis of sediments
which have little near-surface cement and so compag:tion is
extensive, whereas mcxe I is eopropriate for sédiments
which have been well 1'fl. ‘led before any’ significa it
compaction. See text for further .dz'sculs.s'fon.
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FABRIC SELECTIVE OR NOT
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MODIFYING TERMS

GENETIC MODIFIERS SIZE*MODIFIERS
PROCESS DIRECTION OR STAGE CLASSES mm*
256 =
SOLUTION s ENLARGED x large Img
CEMENTATION ¢ REDUCED r MM ™ ::2 |
INTERNAL SEDIMENT i FILLED f large ims
MESOPORE ms Va
smoll sms Yee
TIME OF FORMATION MICROPORE mc
- p Use size prefixes - vp&osﬂy types
pre-depositional Pp smoll mesomold  sms MO
depositional Pd microinterporticle  mcBP
SECONDARY S “For regulor-shaped pores smoller thon cavern size
eogenetic Se + Measures refer to average pore diometer of a single
mesogenetic Sm pore or the range in size of o pore assemblage.
telogenetic St For lubular pores use averoge cross-section.
For platy pores use width and hole shape.
Genetic modifiers are combined as follows: ABUNDANCE MODIFIERS
PROCESS + DIRECTION + TIME percent porosity (15%)
or
EXAMPLES: solution enlorged sx ratio of porosity types (1:2)
cement-reduced primary crP or
sediment-filled eogenetic ifSe rotio and percent (1:2X15%)

Modified from Chogquette ond Pray, 1970

Fig. 2.1. Classification of carbonate porosity. Classification consists of basic porosity types, such as
moldic. Each type is represented by an abbreviation (MO). Modifying terms include genetic modifiers,
size modifiers and abundance modifiers. Each modifier also has an abbreviation. Reprinted by
permission of the American Association of Petroleum Geologists. 54






Dolomitization
limestone - dolomitization - dolostone - dedolomitization - limestone
dolomite, protodolomite, Fe-dolomite
dolomitization - very early - penekontemporaneous dolomite

- late — after cementation, burial (epigenetic d.)
strukturaly selective d., eg. focused on matrix or bioclasts
dolomitization HMC — preserving original structures; dol. A - recrystalization,
destruction of original structures
barroque/saddle dolomite — large crystals, barroque/saddle shaped crystals
and shistosity, undulose extinction - burial (HT, hydrocarbons, sulphide
mineralization)
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Fig. 4.65 Geological record of dolomites through the
Phanerozoic. A, Increasing dolomite occurrence back in
time as suggested by many carlier workers. B, A recent
compilation showing a more variable trend, which broadly
corresponds with the global sca-level curve (greater
abundance of dolomite coinciding with higher sea-level
stand). The global sca-level curve is given in Fig. 4.4,
After Given & Wilkinson (1987).
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Fig. 6.1. Block diagram showing the effect of variation in the three parameters, the Mg/Ca solution
ratio, the salinity, and the CO, / Ca ratio. The plane represents the kinetic boundary between dolomite
and calcite or aragonite and it includes the hidden corner of the Coorong Lagoon waters as a point on
the plane. The basal plane is after Folk and Land (1975). Note that the vertical projection of Coorong
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A decrease in salinity, an increase in the Mg/Ca ratio or an increase in the CO, / Ca ratio favours the
precipitation of dolomite. Reprinted with permission of the Geological Association of Canada.
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Nonplanar: closely packed
anhedral crystals with mostly
curved, lobate, serrated, or
otherwise irregular intercrystalline
boundaries.

Xenotopic mosaic

Planar-e (euhedral);: most
dolomite crystals are
euhedral rhombs.

-~ ldiotopic mosaic.

Planar-s (subhedral): most
dolomite crystals are subhedral
to anhedral with straight,
compromise boundaries and many
crystal-face junctions.

Hypidiotopic mosaic.

|

Fig. 8.6 Three common dolomite textures. (A) Non-planar
crystals in a xenotopic mosaic. (B) Planar-e crystals (e for
euhedral) in an idiotopic mosaic. (C) Planar-s crystals (s for
subhedral) in a hypidiotopic mosaic. After Sibley & Gregg
(1987).
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Fig. 8.3 Mixing-zone dolomitization. Solubility curves for
dolomite and calcite in meteoric water with increasing content
of seawater. Dolomitization is considered to take place in
waters supersaturated with respect to dolomite but
undersaturated with respect to calcite. (A) For dolomite with
solubility product K = 107"7, as used by Badiozamani
(1973). (B) For disordered dolomite with K = 10~'%, as
used by Hardie (1987). Note that in (B) the zone of
dolomitization is much reduced. After Hardie (1987).
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Fig. 4.54 Calcite cement at grain contacts and irregularly

around grains. This geometry indicates precipitation in the

near-surface, meteoric vadose environment. Later

precipitation of large poikilotopic calcite (black, in

extinction) took place during burial. Isolated dolomite

rhombs (arrowed) were precipitated after the meteoric

and before the burial cements. Crossed polars. Lower 65
Carboniferous oolitic grainstone. Glamorgan, Wales.



Fig. 8.13 Pre-compaction dolomite rhomb. Notice that the
edge of the ooid is displaced within the rhomb. Gully Oolite,
[Lower Carboniferous, south Wales.
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dolomitization models

dolomite paradox: marine water oversaturated with dolomite, but its direct precipitation is
inhibited by series of kinetic factors, therefore direct precipitation of A and HMC is more
favourable in nature

» from pore fluids, Bahamas, Florida, Arab. Gulf, 1-4 mm rhombs, surface crusts; increase of
Mg/Ca in pre fluids due to precipitation of A and gypsum-anhydrite, evaporation

» Lake Victoria, direct precipitation from lake waters, high Mg/Ca ratio due to weathering of
basalts

« Coorong, s. Australia, direct precipitation of d., mixing of meteoric Mg rich waters with
marine waters in shallow nearshore lakes, penecontemporaneous dolomite

» lagoons, periodicaly hypersaline, evaporation

e intertidal-supratidal, evaporitic dolomitization, preservation of sed.structures (teepee,
birdseyes)

» shallow subtidal and reef, infiltration and percolation of lagoonal waters with high Mg/Ca
ratio (due to evaporation) back to barrier/reef

» zone of mixing of meteoric and marine waters, ratio 2:1 - decrease of calcite saturation,
but dolomite saturation; lower salinity, Mg/Ca ratio constant

 burial, migration of Mg rich fluids (generated by compaction of pelagic muds) to limestones;
sources of Mg: clay minerals, pore fluids, organic matter, also HMC to LMC recrystallization

« subrecent dolomitization in atols and carb. platforms (1200-1400 m depth), cold marine
waters percolating the limestones - low temperature, low calcite saturation, but saturated with
dolomite; water circulation due to tidal pumping and marine currents - high geothermal
gradient .... Kohoutova konvekce

* in anoxic environments, bacterial reduction of sulphates - kinetic inhibitor of dolomitization,
source of Mg partly in organic matter
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Fig. 8.21 Schematic cross-section of a palm hammock on the
tidal flats of Andros Island, Bahamas, showing dolomitic
crust, now forming in the upper intertidal/low supratidal
zone, with earlier crust occurring beneath the low intertidal—
shallow subtidal sediments. After Shinn ct al. (1965).
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ig. 8.22 Dolomites of the Coorong region, South Australia. (A) The coastal plain of Quaternary barriers and interdi
ats where ephemeral lakes occur and dolomite is being precipitated. (B) Stratigraphic log of a core from an epheme
‘oorong lake. After Von der Borch (1976) and Von der Borch & Lock (1979).
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SAMPLE A 217.1
CONTEMPORARY C'AGE

DOLOMITIC SAMPLE A 217.2
C R}JST 2200 YEARS OLD C'AGE

NORMAL

.~ HIGH TIDE l
= ~ NORMAL
18" Low TiDE

Vertical scale greatly exaggerated.
Horizontal distance about 1000 yds.

T Dark gray pelletal mud containing roots,
_®© | A lond snails, desiccation laminations, few
ex foraminifera and marine gastropods.
IR Light tan pelletal sediment containing
af B  numerous marine gastropods, foraminifera,
JREE ond red mangrove roots.
b R B it 1 - - - (]
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e A Shinn and others, 1965, 1969

Fig. 5.7. a. Stratigraphic cross section across the flank of a palm hammock on Andros Island, the
Bahamas. Note variation in age along the dolomitic crust. b. Schematic cross section across a tidal
channel natural levee on the Andros Island tidal flats. Note that dolomite % is greater in the thin flanks
of the levee than in the thicker channel margin part of the levee due to a dilution effect caused by the
greater rate of sedimentation along the channel margins. Used with permission of SEPM.
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Fig. 4.64 Baroque dolomite: coar:
crystals with undulose extinction.
Plane-polarized light. B, Crossed
polars. Lower Carboniferous
dolomitized oolite (no relics of
structurce left). Glamorgan, Walcs
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DOLOMITIZATION N’\W

DEDOLOMITIZATION DISSOLUTION-
S8 —> </ < o < CEMENTATION
. \Ng\&“ MIXED MVEVT:?EF%-MAR'NE METEORIC WATER
QW

Modified from Purser, 1985

Fig.2.14.Geologic setting for the dolomitization-dedolomitization of Jurassic ooid packstones from the
Paris Basin. Final porosity consists of cement-reduced, dolomite crystal-moldic porosity. Reprinted
from Carbonate Petroleum Reservoirs, with permission. Copyright, Springer-Verlag, New York.
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porosity
calcite - dolomite, reduction of volume, increase of porosity up to 13%

dedolomitization

dolomite - calcite; contact with meteoric water; surface dissolution of gypsum-
anhydrite; burial

identification: pseudomorphs of calcite after dolomite; neomorphic mosaic

silicification of carbonates

early and late; recryst. of bioclasts, node formation, nodular horizons; SiO2
cement

diagenetic (authigenic) quartz types: 1) euhedral crystals, 2) microquartz, 3)
megaquartz, 4) chalcedonic q.

source: sponge needles, diatomites, radiolarians, volcanic SiO2
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