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Recent studies have revealed several genetic systems in

bacteria that use complex RNA structural elements to monitor

regulatory signals and control expression of downstream genes.

These include RNA thermosensors, in which an inhibitory

structure melts at high temperature, and systems where

binding of small RNAs or cellular metabolites modulates the

structure of the RNA. The remarkable feature of these systems

is the ability of the regulatory RNA elements to specifically

sense the regulatory signal, without accessory components,

and convey that information to the gene expression machinery

via a structural change in the nascent RNA.

Addresses
Department of Microbiology, The Ohio State University, 484 West 12th

Avenue, Columbus, OH 43210, USA

Correspondence: Tina M Henkin

e-mail: henkin.3@osu.edu

Current Opinion in Microbiology 2004, 7:126–131

This review comes from a themed issue on

Cell regulation

Edited by Regine Hengge and Richard L Gourse

1369-5274/$ – see front matter

� 2004 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.mib.2004.02.013

Abbreviations
AdoCbl adenosylcobalamin

FMN flavin mononucleotide

RNAP RNA polymerase

SAM S-adenosylmethionine

TPP thiamin pyrophosphate

Introduction
Regulation of gene expression by modulation of RNA

structure was discovered over 25 years ago, and a variety

of molecular mechanisms have been uncovered

(reviewed in [1]). Early examples included the Escher-
ichia coli trp and Salmonella typhimurium his operon

attenuation systems, where readthrough of a transcrip-

tion termination signal in the 50 region of an mRNA (the

‘leader region’) is determined by the progression of a

ribosome translating a segment of the leader RNA

upstream of the terminator; stalling of the ribosome

results in formation of an antiterminator structure, which

prevents formation of the terminator helix [2]. Leader

RNA translation can also control expression of a down-

stream coding sequence by affecting the accessibility of

the translation initiation region, in systems such as the

Bacillus subtilis cat gene [3]. In the first type of system,

availability of specific charged tRNAs determines the

efficiency of leader peptide translation, thereby altering

the relative positions of the ribosome and RNA poly-

merase (RNAP). In the second type of system, the leader

peptide itself acts in conjunction with an inducer mole-

cule such as chloramphenicol to stall the ribosome on the

mRNA. In both cases, the translating ribosome monitors

the key physiological signal (amino acid availability or

antibiotic concentration), and the resulting effects on

ribosome position determine the structure of the nascent

RNA, and its fate.

A second mechanism for the use of RNA structures to

control gene expression involves a specific RNA binding

protein, binding of which determines whether the RNA

will fold to form an intrinsic terminator helix, or a struc-

ture that occludes the translation initiation site; alterna-

tively, binding of the protein can directly block access of

the initiating ribosome. The concentration of the RNA

binding protein can be monitored directly, for example in

ribosomal protein operons, or its RNA binding activity

can be controlled by interaction with an effector molecule

(e.g. tryptophan in the B. subtilis TRAP system), or

second regulatory protein (e.g. BglG phosphorylation

by BglF). Systems of this type are reviewed in this issue

by Babitzke [4].

Environmental signals can also directly alter RNA struc-

ture. The mRNAs for several genes, including E. coli
rpoH, encoding the heat-shock sigma factor, and Listeria
monocytogenes prfA, encoding a key regulator of pathogen-

esis, contain structures that prevent binding of the ribo-

some to the translation initiation region. Melting of these

structures in response to an increase in temperature

allows induction of gene expression under appropriate

conditions, so that the mRNAs act as thermosensors [5,6].

RNA structure can be modulated by binding of antisense

RNAs to control translation, mRNA stability or premature

termination of transcription (reviewed by Storz et al. [7] in

this issue and [8]); in these systems, the concentration of

the regulatory RNA is monitored.

Recent studies have identified a variety of systems

where leader RNAs directly sense physiological signals

by binding an effector molecule, without a requirement

for ‘interpretation’ of the signal by a regulatory protein or

translating ribosome. In this review, we focus on systems

of this type, which illustrate the ability of RNA to spec-

ifically recognize effector molecules and to transmit in-

formation to the gene expression machinery via RNA

structural rearrangements. Because the data indicate

that these RNAs monitor a range of effector concentra-

tions, and give intermediate responses to intermediate
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concentrations, we use the term ‘RNA sensors’; the term

‘riboswitch’ is more appropriately used for any RNA that

exhibits a structural switch in response to binding of any

ligand, including a protein.

Leader RNA-tRNA recognition
tRNA plays a crucial role in protein synthesis, by con-

veying each amino acid in turn to a growing peptide chain.

Each tRNA is selected by codon-anticodon pairing within

the ribosome, and the specificity of the tRNA-amino acid

linkage, determined by the cognate aminoacyl-tRNA

synthetase, ensures that codons will be correctly inter-

preted. The charging ratio of tRNA can also be used as a

regulatory signal, allowing the cell to recognize amino

acid starvation via the stringent response, or to measure

availability of a specific amino acid during leader peptide

translation, as described above. tRNA charging can also

be monitored directly by a leader RNA, in the absence of

translation.

The T box system

Many amino-acid-related genes in Gram-positive bac-

teria are regulated at the level of transcription termina-

tion by the T box mechanism [9]. Transcriptional units

in this family exhibit a set of conserved primary seq-

uence and structural elements in their 50 regions, with

gene expression controlled by competition between

mutually exclusive terminator and antiterminator struc-

tures. The decision between the alternate leader RNA

structures is determined by interaction of the nascent

transcript with an uncharged tRNA specific for the amino

acid class of the downstream coding sequence, so that a

tyrosyl-tRNA synthetase gene responds to tRNATyr, and

so on. The specificity of the tRNA response is dependent

on pairing of the anticodon of the tRNA with a single

codon, designated the ‘specifier sequence’, in the leader

sequence. The acceptor end of the uncharged tRNA also

pairs with residues in the antiterminator element to

stabilize the antiterminator, and prevent formation of

Figure 1
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RNA elements that directly bind effector molecules. For the T box system, the cognate uncharged tRNA (shown in cloverleaf form) serves as the

effector. In the absence of the effector (or in the presence of aminoacylated tRNA, indicated by the boxed AA), the leader RNA folds into the

terminator form (T, blue paired with green). In the presence of the effector, the antiterminator (AT, red paired with blue) is stabilized, preventing

formation of the terminator helix and allowing transcription of the downstream coding regions (green arrow). This arrangement can also be used to

regulate gene expression at the level of translation initiation, in which case the ‘terminator’ helix (A-SD) sequesters the Shine-Dalgarno sequence (SD)
of the downstream gene. For the small molecule binding RNAs, the antiterminator structure forms in the absence of effector, allowing expression

of the downstream coding regions (green arrow); addition of the effector (*) promotes stabilization of an anti-antiterminator element (AAT) that

sequesters sequences (red) required for formation of the antiterminator (AT, red–blue), permitting formation of the less stable terminator helix

(T, blue-green). As described above, the terminator helix can be replaced with a structure that occludes the Shine-Dalgarno sequence (SD) of

the downstream gene to permit regulation at the level of translation initiation. A simplified version of the S box leader format is shown as an

example; the region above the anti-antiterminator helix varies in different systems, presumably to confer ligand binding specificity.
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the competing terminator helix [10] (Figure 1). The

leader RNA-tRNA interaction was demonstrated for

the B. subtilis glyQS gene in a purified in vitro transcrip-

tion system; antitermination is dependent on addition of

tRNAGly, in the absence of any additional factors [11��].
This result indicates that the glyQS nascent transcript

can directly monitor uncharged tRNAGly. The ability

to use unmodified tRNA in this system facilitated de-

tailed analysis of tRNA requirements [12]. By contrast,

tRNAThr-dependent antitermination of the thrS gene

required addition of either a cellular fraction or high

concentrations of spermidine, possibly to facilitate

proper folding of the leader RNA [13�]. It is clear from

these and related biochemical studies of the isolated

antiterminator domain [14,15�] that the tRNA can

interact directly with the leader RNA, without a trans-

lating ribosome.

Over 300 transcriptional units have been identified as

likely members of the T box family by genomic analyses

([16]; FJ Grundy, SM Rollins and TM Henkin, unpub-

lished). tRNA-dependent antitermination has been dem-

onstrated for several of these genes, and can be inferred

for many others based on identification of competing

terminator and antiterminator helices. In addition, there

are several putative T box leaders in which it appears

that regulation occurs at the level of translation initiation,

because the helix that competes with the antiterminator-

like domain sequesters the Shine-Dalgarno sequence of

the downstream coding region. However, translational

control has not yet been demonstrated.

Leader RNA-metabolite interactions
Several regulatory systems in bacteria that involve direct

interaction of small molecules with leader RNA elements

have recently been uncovered. Discovery of systems of

this type hinged on identification of conserved regulatory

elements in the leader regions of sets of genes with

related function, and the failure to identify a trans-acting

regulatory protein. This possibility was raised in several

reports [17–20], and has now been confirmed by biochem-

ical studies. Regulation by either premature termination

of transcription, primarily in Gram-positive bacteria, or

inhibition of translation initiation, primarily in Gram-

negative bacteria, has been found or proposed. The

RNA elements fit a general pattern where formation of

the helix of the intrinsic terminator (or the helix that

sequesters the translation initiation region) is, in the

absence of effector, prevented by formation of a more

stable competing antiterminator structure. Effector bind-

ing is proposed to stabilize a third competing structure

that serves as an anti-antiterminator, which allows forma-

tion of the terminator (Figure 1).

Related RNA elements have been identified in eukar-

yotic cells, where they have been predicted to affect

RNA splicing or stability [21]; this has been confirmed for

the Aspergillus oryzae thiA gene, where thiamin availabil-

ity in vivo appears to inhibit splicing [22]. Synthetic

regulatory elements designed to allow modulation of

RNA structure, and therefore translation, in response

to binding of tetracycline, have also been designed for

eukaryotic systems, illustrating the practical use of this

type of mechanism [23].

The B12 element

Genes involved in biosynthesis and transport of vitamin

B12 (cobalamin) contain conserved features in their

upstream regions. The first element identified, desig-

nated the B12 box [24], was subsequently expanded by

a more comprehensive phylogenetic analysis and termed

the B12 element [25�,26�]. Addition of adenosylcobalamin

(AdoCbl) to E. coli btuB mRNA inhibited ribosome bind-

ing, and primer extension analysis revealed a structural

change in the RNA [18]. A more detailed analysis of the

btuB mRNA structure yielded a model somewhat differ-

ent from that derived from phylogenetic analysis, and

showed several AdoCbl-dependent structural changes

[27�]. Together, these results suggest that binding of

AdoCbl to the btuB mRNA causes a rearrangement in

the RNA that results in sequestration of the translation

initiation region; by contrast, binding of AdoCbl to the B12

element in genes from low GþC Gram-positive bacteria

is proposed to trigger formation of an intrinsic terminator

helix [25�], although experimental confirmation has not

yet been reported.

The THI box

The presence of a conserved structural element upstream

of genes involved in biosynthesis and transport of thiamin

(vitamin B1) suggested regulation by a common mech-

anism [19,28,29�]. Analysis of Rhizobium etli thiC expres-

sion in vivo revealed that regulation occurs at the level

of premature termination of transcription; a thiamin-

dependent structural alteration in the RNA was proposed

to block binding of the ribosome to the Shine-Dalgarno

sequence, allowing formation of the terminator helix in

the transcript [19]. Addition of thiamin pyrophosphate

(TPP) to E. coli thiC RNA synthesized in vitro resulted

in structural alterations consistent with the model; by

contrast, TPP-dependent sequestration of the Shine-

Dalgarno region of the E. coli thiM gene appears to cause

regulation at the level of translation initiation, without

transcription termination [30��]. Addition of TPP to an in
vitro transcription system using purified B. subtilis RNAP

and a B. subtilis tenA template resulted in termination

within the leader region [31��]. In each of these genes,

mutation of conserved elements in the THI box confers

loss of response to TPP. These results indicate that the

leader RNA THI box element is responsible for specific

regulation in response to TPP. Detailed phylogenetic

analysis of thiamine-related genes [29�] supports the

initial observation that, as in the B12 genes, regulation

is primarily at the level of translation in Gram-negative

128 Cell regulation
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organisms, and at the level of transcription termination in

low GþC Gram-positive species.

The RFN element

A conserved element found upstream of genes involved

in riboflavin biosynthesis was designated the RFN ele-

ment [17], and sequence analysis suggested that this

element controls gene expression at the levels of tran-

scription termination or translation initiation [32�]. Bind-

ing of flavin mononucleotide (FMN) to the B. subtilis rib
operon leader RNA, FMN-dependent transcription ter-

mination and structural changes in the leader RNA were

demonstrated [31��,33��]. The predicted regulation of

other riboflavin genes at the level of translation initiation

has not yet been tested.

The S box

Genes involved in methionine metabolism in low GþC

Gram-positive bacteria were found to contain a conserved

leader RNA element designated the S box [34]. Addition

of S-adenosylmethionine (SAM) is sufficient to promote

termination in vitro by B. subtilis RNAP, and a SAM-

dependent structural rearrangement consistent with the

model was observed [35��]. In vitro transcribed leader

RNA exhibited specific binding of SAM, and mutations

that cause constitutive expression in vivo confer loss of

SAM-dependent termination and SAM binding in vitro
[35��–37��]. Very few S box leaders have been identified

in Gram-negative organisms; however, consistent with

the pattern for other systems, these genes appear to be

regulated at the level of translation initiation (FJ Grundy,

BA McDaniel and TM Henkin, unpublished).

The G box

Several genes involved in guanine biosynthesis, primarily

in low GþC Gram-positive organisms, contain a con-

served 50 element designated the G box [38�,39��]. This

element in the B. subtilis xpt-pbuX mRNA binds guanine

and exhibits a structural alteration consistent with the

model that binding of guanine promotes formation of a

terminator helix. However, guanine-dependent transcrip-

tion termination has not been demonstrated in vitro.

The L box

Expression of the B. subtilis lysC gene, encoding asparto-

kinase II, is repressed during growth in lysine at the level

of premature termination of transcription, and leader

region mutations result in constitutive expression [40].

Sequence similarity between the B. subtilis and E. coli lysC
upstream regions was noted, but no transcriptional ter-

minator was observed in the E. coli gene, suggesting that

the regulatory mechanism differs in the two organisms

[41]. A pattern of conserved elements, designated the L

box, was identified upstream of several lysine biosynth-

esis genes in both Gram-positive and Gram-negative

bacteria, and this element was shown to be necessary

for lysine-dependent transcription termination in vitro

[42��]. Further phylogenetic analyses identified this ele-

ment upstream of additional lysine related genes [43�].
Binding of lysine to the lysC RNA causes structural

changes consistent with the model that lysine binding

promotes termination by preventing formation of an

alternate antiterminator structure [42��,44��].

Conclusions
Specificity and sensitivity

A crucial element of any regulatory system is the ability to

differentiate the relevant effector molecule from related

molecules. For example, in the S box system it is essential

to distinguish SAM, the true effector, from S-adenosyl-

homocysteine, the byproduct of SAM as a methyl donor. S

box RNAs exhibit 200-fold discrimination between these

molecules, although they differ by a single methyl group

[35��]. Similar specificity has been observed for other

regulatory RNAs in this group. For the metabolite bind-

ing RNAs, the specificity determinants have not yet been

uncovered. In the T box system, the leader RNAs make

use of the same identity determinants used by many

aminoacyl-tRNA synthetases to recognize their cognate

tRNAs (i.e., the anticodon and the discriminator base).

A second major issue for biological function is sensitivity

to effector concentration. Do the RNAs respond to phy-

siologically relevant concentrations? For each system

where this information is available, the concentration

of effector required for a response in vitro reflects the

intracellular pools. As the effective concentration varies

widely for different systems, for example 5 mM SAM

versus 3 mM lysine, each RNA must be calibrated to

have the appropriate affinity for its ligand.

How widespread are RNA sensor systems?

The increasing availability of genomic data, and the tools

for recognition of conserved patterns upstream of related

genes, have resulted in the discovery of an amazing array

of systems of this type within a very short time period

(Table 1). In each case, an understanding of the regula-

tory properties of these gene sets and likely effectors,

based on classical microbial genetic and physiological

Table 1

Regulatory systems using direct RNA measurement of effector
molecules.

System Genes Effector Regulatory

response

T box Amino acid Uncharged tRNA Induced

B12 element Cobalamin AdoCbl Repressed

THI box Thiamin TPP Repressed

RFN element Riboflavin FMN Repressed

S box Methionine SAM Repressed

G box Purine Guanine Repressed

L box Lysine Lysine Repressed
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analyses, has provided the foundation for the biochemical

analyses that establish the role of the RNA itself. Given

the rapid pace of work in this field, it is highly likely that

many more systems remain to be uncovered.
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