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Abstract: Supraglacial lakes (SGL) are a specific phenomenon of glaciers. They are important for
ice dynamics, surface mass balance, and surface hydrology, especially during ongoing climate
changes. The important characteristics of lakes are their water storage and drainage. Satellite-based
remote sensing is commonly used not only to monitor the area but also to estimate the depth and
volume of lakes, which is the basis for long-term spatiotemporal analysis of these phenomena. Lake
depth retrieval from optical data using a physical model requires several basic assumptions such as,
for instance, the water has little or no dissolved or suspended matter. Several authors using these
assumptions state that they are also potential weaknesses, which remain unquantified in the literature.
The objective of this study is to quantify the effect of maximum detectable lake depth for water with
non-zero suspended particulate matter (SPM). We collected in-situ concurrent measurements of
hyperspectral and lake depth observations to a depth of 8 m. Additionally, we collected water
samples to measure the concentration of SPM. The results of empirical and physically based models
proved that a good relationship still exists between the water spectra of SGL and the lake depth in the
presence of 48 mg/L of SPM. The root mean squared error for the models ranged from 0.163 m (Partial
Least Squares Regression—PLSR model) to 0.243 m (physically based model), which is consistent with
the published literature. However, the SPM limited the maximum detectable depth to approximately
3 m. This maximum detectable depth was also confirmed by the theoretical concept of Philpot (1989).
The maximum detectable depth decreases exponentially with an increase in the water attenuation
coefficient g, which directly depends on the water properties.

Keywords: supraglacial lake; remote sensing; lake depth; suspended particulate matter

1. Introduction

Supraglacial lakes (SGLs) are an important phenomenon of the cryosphere for several
reasons even though they are rather small and shallow (compared to other types of lakes
around the world) and are bound to specific environments both on ice sheets and on
mountain glacier tongues. The current literature about SGLs is abundant with references to
the strong deglaciation of the ice sheets and mountain glacier tongues (and its reaction to
climate change), and to glacier related hazards (e.g., Glacial Lake Outburst Floods—GLOF).
The importance of supraglacial lakes has substantially changed in recent decades. In the
middle of the last century, supraglacial lakes were considered as ephemeral phenomena
that were interesting only as limnological curiosities [1]. Supraglacial lakes are those
that develop directly on the glacier [2]. Melting of ice may result in the development
of SGLs due to glacier ablation and its interaction with the drainage system [3]. The
spatial distribution of supraglacial lakes on a glacier is constrained by thermal conditions,
glacier surface inclination, and debris cover [4]. The upper limit is defined by the zero
isotherm during the melt season, while the lower limit represents the glacier terminus [5,6].
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Nevertheless, the lower limit could be influenced by thick debris cover, which prevents
melting, and the lowermost end could in this way be shifted upslope the glacier [5]. Liu
et al. [7] described the impact of debris cover and mean air temperature on the supraglacial
lake distribution based on studies from Tien-Shan. Parts of the article from Emmer et al. [8]
describe the cycle of formation and extinction of supraglacial lakes and the melting of
buried (debris-covered) ice.

Over the last two decades, SGLs have attracted attention due to their formation and
expansion due to climate change [5,9–11]. The influence of ice melts and ice flow on the
Greenland ice sheet, and potentially their causal role in ice shelf disintegration on the
Antarctic Peninsula, was mentioned by Langley et al. [12]. Banwell et al. [13] stressed that
supraglacial meltwater lakes trigger ice-shelf break-up and modulate seasonal icesheet flow
and are therefore agents by which warming is transmitted to the Antarctic and Greenland
ice sheets. The influence on heat transport is also mentioned (apart from surface mass
balance and ice dynamics) in the publication by Pope et al. [14]. The SGLs and their
outbursts substantially affect the net ablation rate of glaciers [15], having a great impact on
its mass and water balance [6]. Everett et al. [16] pointed out that observations on the west
coast of the Greenland ice sheet typically show an up-glacier progression of drainage as the
annual melt extent spreads inland.

Publications relating the formation and rapid drainage of SGLs to the mass balance and
dynamics of glaciers [17–22] have become increasingly more common in recent years [23–25].
SGLs certainly affect not only the subglacial conditions but also the surface glacier environ-
ment [26]. Nevertheless, the sudden drainage of SGLs has been previously observed to
initiate surface-to-bed hydrologic connections, which can enhance basal sliding in regions
of the Greenland ice sheet where ice thickness approaches 1.0 km [27].

Due to global warming and following glacier retreat, new lakes are developed [28].
SGLs are usually not part of glacial lake inventories, because they are rather small and
shallow (e.g., Bat’ka et al. [29]). Nevertheless, they may contribute to the glacial lake
outburst floods (GLOFs) hazard. It is therefore important to understand the role of SGLs
in glaciated areas, i.e., where these lakes are, what volume of water they store, when they
form, and how they change over the melting season and over long time periods. SGLs
are usually rather unstable, and this is one of the reasons why we need to understand the
processes of origin and formation and their depth and volume.

Satellite-based remote sensing is commonly used to detect the location, area, and
depth (volume) of SGLs. Numerous studies confirm the high accuracy of SGL detection
and tracking [21,27,30]. For instance, Liang et al. [27] reported an accuracy of 99.0% for
the detection of the area of SGLs, while the accuracy of the tracking was 96.3%. Dirscherl
et al. [31] reported a F1-score of up to 98%, while the average F1-score was 86% using
Sentinel-2 optical images. Moussavi et al. [32] combined Landsat-8 and Sentinel-2 imagery
and achieved overall accuracies of >95% for Landsat-8 and >97% for Sentinel-2. Recently,
research studies have been published that also use Synthetic Aperture Radar (SAR) im-
ages [25,33] to increase the temporal resolution in periods of dense clouds. However, the
accuracy of the detection of the SGL extent has not yet been compared with the optical data.

Lake properties such as lake area and timing of formation are also estimated from
optical remote sensing data, allowing the evolution and potentially also the drainage events
of the lake to be studied. Estimation of lake depth and water volume, on the other hand, is
a more challenging task as these values are not the primary information retrieved from the
optical signatures. The reported accuracies vary from study to study. Georgiou et al. [19]
reported root mean square error (RMSE) of 0.7 m and 0.3 m for SGLs with a maximum
depth of 9.6 m using airborne lidar observations. Tedesco and Steiner [26] reported RMSE
of 0.59 and 0.45 m on SGLs with a maximum depth of 8 m using in-situ sonar measurements
as a reference. Fitzpatrick et al. [34] reported RMSE of 1.47 m on SGLs with a maximum
depth of 16 m using raft-measured depth (the instrument is not mentioned), and Pope [14]
reported the accuracy of lake depth retrieval as RMSE of between 0.28 and 1.62 m on SGLs
with a maximum depth of 5 m when compared to a WorldView-derived DEM. Williamson
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et al. [33] found that the Moderate Resolution Imaging Spectroradiometer (MODIS) red
band produced SGL depths with RMSE of 1.27 m when compared to Landsat-8 derived
values. In addition, Williamson et al. [35] compared Sentinel-2 depth retrieval with Landsat-
8 and found high correspondence between the two sets with R2 = 0.841 and RMSE = 0.555 m.

Recently, König [36] used UAV hyperspectral imagery in very high spectral and
spatial resolution to map SGL depth and reached RMSE = 4.04 cm. Apart from using
only optical data for the SGL depth retrieval Fricker et al. [37], Datta and Wouters [38]
proposed the use of ICESat-2 laser altimetry data together with optical imagery. Similarly,
Lai et al. [39] combined Landsat-8 and ICESat-2 to retrieve bottom depth of optically
shallow waters, albeit on an open ocean, not a supraglacial lake. Studinger et al. [40] used
the Airborne Topographic Mapper (lidar) together with high-resolution optical imagery to
study supraglacial hydrological features.

There are typically two main methods used to estimate the depth of SGLs from optical
remote sensing data: an empirical method [21,34] with some variation, and a physically
based method [10,14,32,33]. The SGL depth retrieval principle assumes that deeper water
absorbs more electromagnetic energy than shallow water. Several of the published studies
use empirically based models for depth–reflectance relationships. Some of the studies use
one band for a reflectance–depth relationship, while others use two different bands of the
multispectral sensors. Box and Ski [14] approximated the relationship between the SGL
depth and the surface reflectance using the simple equation

z = a0/(Rred + a1) − a2,

where a0, a1, and a2 are vectors of the empirical coefficients to fit with, e.g., the least squares
method, z is the lake depth in meters, and Rred is the red band reflectance.

Philpot [41] proposed bathymetric mapping with passive multispectral data, which
may be applied principally to SGL depth retrieval. This generic physically based approach
was adopted by Sneed and Hamilton [10], among others. The retrieval model is based on
the Bouguet–Lambert–Beer law, which models how the incoming radiance is attenuated as
it passes through a medium. Such physically based methods have the generally assumed
advantage of not requiring site-specific parametrization.

Tedesco and Steiner [26] recall that the SGL physically based method requires basic
assumptions on the spectral properties of the water as well as the bottom of the lake.
The inherent assumptions of the model are derived here from Philpot [41], Sneed and
Hamilton [42], Williamson et al. [33], Mobley et al. [43], Maritorena et al. [44], Pope et al. [45],
and Pope et al. [14], as follows:

(i) The optical properties of the water are vertically homogeneous and parallel to the
surface;

(ii) The surface of the lake is not disturbed by the wind;
(iii) Suspended or dissolved, organic or inorganic particulate matter is no present or is

minimal;
(iv) The ice bottom is homogenous and gently sloping;
(v) lake bottom has homogenous albedo.

We revised the physical model parametrization of the SGL physically based model as
published by different authors (Table 1). The search was limited to the publications where
in-situ reference data were used and a red band was applied for the SGL depth retrieval.
Some authors calculated the value of the bottom albedo Ad parameter from the optical
images by taking the average of the albedo from pixels neighboring the supraglacial lake,
while others opted to fit with all the parameters as free. Most of the authors fitted the
attenuation coefficient statistically, while Tedesco and Steiner [26] followed the physical
calculation and in-situ data measurements from Smith and Baker [46].
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Table 1. Physically based model parameters.

Attenuation
Coefficient (g) (m−1)

Bottom
Albedo (Ad)

Deep Water
Reflectance (R∞) Method Reference Publication

0.118 0.5639 0.038 g: NA 1, Ad: lake ice 3, R∞: ocean 4 Sneed and Hamilton [42]
0.65 0.34 ± 0.062 NA 1 g = 2 K 2; Ad: lake ice 3 Tedesco and Steiner [26]

0.868 0.5 0.02 Fitting (g); Ad: NA 4; R∞: ocean 4 Morriss et al. [47]
0.69 0.19 0.03 Fitting (g, Ad, and R∞) Moussavi et al. [24]
0.73 0.28 0.03 Fitting (g, Ad, and R∞) Moussavi et al. [24]
0.80
0.83

0.228
0.212

0.0375
0.047 Fitting (g) Pope et al. [14]

1 Not Available, 2 Kd value from Smith and Baker [46], 3 lake adjacent ice average from image, 4 ocean reflectance
average.

The table reveals varying albedo parameter Ad from 0.19 to 0.56 but also varying
attenuation coefficient g from 0.118 to 0.868. Assuming the decreasing albedo of the glacier
near the SGL may be affected by the presence of surface impurities in the meltwater, we
plotted (Figure 1) the values of the albedo Ad against the fitted water attenuation parameter
g. The scatterplot is somewhat limited by the number of the references to only seven points;
however, the graph illustrates a relative increase of the attenuation coefficient g with a
decrease in the albedo Ad. The only exception is the triangle point. We hypothesize that
the attenuation coefficient g may inherit the information about the impurities in the water,
presumably SPM, from the melting glacier. This would mean that the assumption of no
influence of the SPM in the SGL water may be weak, and more research is needed.
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In parallel to the above-mentioned SGL depth retrieval physical method, Lee et al. [48]
developed a hyperspectral remote-sensing reflectance model for shallow waters, deriving
bottom depth. Albedo intensity is allowed to change spatially. The model (Lee et al. [48]) de-
rives simultaneously bottom depths, albedo, and the water optical properties (chlorophyll-a
and gelbstoff for instance). The SPM is, however, not a parameter of the model. The model
is designed for sea and ocean waters and not supraglacial lakes.
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Williamson et al. [33] and Pope et al. [14] recall that the assumptions of the SGL
physically based model are also potential weaknesses, which remain unquantified in the
literature. The objective of this study is to quantify the effect of suspended particulate
matter (SPM) on the SGL depth retrieval from optical data. We assume the SPM is an
important property of the water, which influences the interaction of electromagnetic radi-
ation with the medium. This effect is well known and scientifically studied for non-SGL
waters and described by several publications [49,50]. The effect of SPM is not modelled
by the Philpot [41] physical model used for the SGL depth retrieval; it may, however,
potentially impose one of the uncertainties. We hypothesize that non-zero SPM concentra-
tion may negatively influence the model performance, given the increasing absorption of
electromagnetic radiation with increasing SPM concentration.

The study presents spectral curves of the clear and SPM-affected supraglacial water
for the first time. The spectral curves are measured in the visible and near-infrared electro-
magnetic spectrum ranging from 350 nm to 900 nm, which we refer to as optical data. Next,
we present the results of in-situ experimental data based on concurrent hyper-spectral
and bathymetric lake depth measurements. We address the unquantified assumption of
the physical model, namely, that which pertains to suspended particulate matter (SPM)
in the lake water. The objective is divided into several partial tasks. We first evaluate
the SGL depth retrieval method from optical hyperspectral records under the presence of
SPM using the empirical model based on concurrent hyperspectral and bathymetric lake
depth measurements. Subsequently, we apply the SGL physically based model and update
the attenuation coefficient of the model to improve its performance for the given SPM
concentration of SGL water measured in-situ. Finally, we quantify the effect of maximum
detectable lake depth for water with non-zero SPM.

2. Data and Methods
2.1. Characteristics of the Study Area

For our field experiment, we chose a lake on the Glacier de la Plaine Morte in the
Bernese Alps in Switzerland (Figure 2). This lake (Lac des Faverges) is an ice-marginal lake;
nevertheless, the bottom of the northern part of the lake is created by a glacier, making
it suitable for our experiment as an SGL. A considerable part of the Glacier de la Morte
is impermeable to water flow. Therefore, meltwater accumulates in surface streams [51].
According to Hählen [52], the lake has a considerable water volume of about 1.5 Mm3, and
growth is expected. Lac des Faverges, as well as another two smaller lakes on the margin
of the Glacier de la Morte, is formed at the border of a glacier and impermeable sediments,
making it potentially unstable. Between 2011 and 2013, some of the lakes were subject to
subglacial drainage [52]. Lac de Faverges is refilled annually, and meltwater accumulates
in the lake basin. After reaching the maximum level of 2752 m above sea level, the lake
water is drained through a superficial channel in the moraine deposit towards the Tièche
basin [51]. Lindner et al. [53] described the typical fractures on the Glacier Plaine de la
Morte on a centimeter or decimeter scale.

2.2. Collection of Experimental Data
2.2.1. Spectral Data

We collected 158 field spectra and depth measurements from Lac des Faverges and 30
additional spectra from a small pond with limited depth of 50 cm, both on the Glacier de
la Plaine Morte. The spectral data were collected using an ASD FieldSpec® 4 (ASD Inc.,
Boulder, USA) high-resolution spectroradiometer instrument in the spectral range of visible
(VIS) to shortwave-infrared wavelengths. The instrument acquired a continuous spectrum
of λ = 350 to 2500 nm.
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The spectroradiometer was calibrated using a white reference panel (Spectralon®—
Labsphere Inc., North Sutton, NH, USA, diffuse reflectance material), the same calibration
panel as for instance used by Tedesco and Steiner [26] as well as Moussavi et al. [24] and
Pope et al. [14]. The calibration was checked before and after the data collection. Conversion
of the collected FieldSpec® (ASD Inc., Boulder, CO, USA) DN values to reflectance followed
the standard procedure using the white reference data. Each collected lake spectra consisted
of 50 replications, which were averaged before conversion to reflectance. Due to a low
signal of water reflectance at wavelengths longer than λ = 900 nm, the analysis focused on
Rlake calculated in a range between 350 and 900 nm. Furthermore, an ASD contact probe
was used to measure the spectra of the rock samples (limestone and clayey shale) collected
from the sample locations, and sediment from the edge of the glacier.

2.2.2. Bathymetric Data

The RiverSurveyor system (SonTek) was used for in-situ depth measurements of the
SGL. The system includes a 0.5 MHz echo-sounder with integrated GPS and a separate
RTK Base Station. The echo-sounder was situated on the hydroboard together with the
ASD FieldSpec® (ASD Inc., Boulder, CO, USA) 4 spectroradiometer. The measured depths
were collected with an accuracy of 1 cm. Prior to the measurement, the accuracy of the
echolot was validated using a manual depth measurement of up to 12 m. The comparison
of the manual and echolot data revealed very high correspondence (Mean Absolute Error
MAE = 0.292 m, RMSE = 0.353 m, coefficient of determination R2 = 0.999). Low water
depths (less than 0.3 m) were measured using a hand meter.

2.2.3. Water Laboratory Analysis

At the time of bathymetric profiling (at the same place as the spectrum measurements),
two water samples (1.5 L) were taken for laboratory gravimetric determination of the
suspended particle concentration [54]. PRAGOPOR 4 membrane filters with a diameter
of 50 mm and a pore size of 0.85 µm were used to filter the water samples taken. The
empty filter weight was 0.064 g. The dried filter (105 ◦C) was weighed after filtration on
KERN PCB precision scales. Water transparency was measured using a 30 cm diameter
Secchi disc, and the physical parameters of the lake water were measured using a YSI 6920
multiparametric probe (temperature and conductance sensors). The default value (0.65) for
conversion of specific conductance in µs/cm to total dissolved solids (TDS) in mg/L was
used. We are aware that it is only useful for the gross estimate of the TDS [55].
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2.3. Methods
2.3.1. Partial Least Squares Regression (PLSR)

In the first analysis, we performed the empirically based modelling using the PLSR
multivariate regression method to estimate the SGL depth, given the fact we collected
full continuous spectral data. The matrix of predictors (spectra) has more variables than
the observations and multicollinearity among the spectra exists. For every measured lake
depth, we used 551 spectral values. The PLSR method is different from those used in the
other studies. The advantage is the loading values calculated by PLSR, which provide
information on the influence of the spectra on the model.

The PLS package in R [56], was employed to model the relationship between the col-
lected lake depth and the spectra records. The original spectral values from the FieldSpec®

4 (ASD Inc., Boulder, USA) instrument were converted into spectral reflectance and limited
to a spectral range of λ = 350 nm to 900 nm (spectral values in a longer wavelength reached
zero values) prior to PLSR analysis.

The PLSR model was trained with the collected in-situ data set, whereby a maximum
of 10 components were used to calibrate the model. The model was cross-validated
using the leave-one-out (LOO) segments while evaluating the root mean square error of
predictions (RMSEP). The RMSEP was used to select the “best” model against the number
of factors. To evaluate the model performance, we plotted the RMSEPs against the number
of components in the model. The relative change of RMSEP with the number of factors
compared to the minimum RMSEP was used to choose the number of components in
the model. The coefficient of multiple determinations R2 was also assessed as the quality
parameter of the model, but only as a secondary parameter. The first two PLSR factor
loadings, considered to be indicators of the correlation between the spectra and the water
depth, were also plotted for a qualitative interpretation.

Alongside the above-described model cross-validation during the training phase, we
initially split the original full data set into train (calibration) and test (validation) subsets to
evaluate the model performance on a set of samples that were not used in the empirical
model construction. We applied stratified sampling while selecting 70% for mode training
and 30% for model testing.

2.3.2. Physical Model

Philpot [41] describes a simple radiative transfer model for optically shallow waters of
the general form:

Ld = Lb exp(−gz) + Lw, (1)

where Ld is the radiance observed on the remote (proximal) detector, Lb is a radiance term,
which is sensitive to bottom reflectance, g is a two-way attenuation coefficient of the water,
z is the depth of the water column, and Lw is the radiance observed over optically deep
water.

Solving the radiative transfer model, Philpot [41] provides a logarithmic form with
the approximation of the lake depth z in meters as:

z = [ln(Ad − R∞) − ln(Rlake − R∞)]/g, (2)

where, Rlake is the reflectance measured from the lake in the location of interest.
The two-way attenuation coefficient g accounts for losses in both the upward and

downward travel through the water column in m−1. Philpot [41] relates the g parameter to
the diffuse attenuation of the downwelling light (kd), the beam absorption coefficient, and
the distribution factor for upwelling irradiance Du:

g ~ kd + a Du. (3)

All the parameters, except the depth, are wavelength dependent. The two-way attenu-
ation coefficient g depends on the absorption coefficient and the backscattering coefficients,
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which are modified by the concentration and type of SPM. Sneed and Hamilton [10] mea-
sured the total suspended solids to be 0.74 mg/L and 0.20 mg/L in samples of melt pond
water taken from the Helheim glacier, east Greenland. However, the respective g coeffi-
cients used in the study were not presented; hence, the effect was not quantified. All other
authors assume no or minimal influence of SPM. To apply the physically based model, the
Ad, R∞, and g parameters must be determined before the depth estimation.

We ran the water depth retrieval with a physically based model as provided in Equa-
tion (2). The model is applied to evaluate the effect of the SPM on the model with physical
basis. The published studies on SGL depth retrieval with physically based single-band
models used various bands, typically green, red, or NIR. Early studies, for instance Geor-
giou et al. [19], focused more on the green band, which corresponds to λ = 525–605 nm
using the Landsat-7 sensor, whereas later studies, for instance Sneed and Hamilton [42],
focused more on the red band, which corresponds to λ = 630–690 nm using the Landsat-7
sensor. Pope et al. [14] concluded that the optimal SGL depth retrieval may be achieved
by a physically based single-band model applied to Landsat-8 OLI red and panchromatic
bands and subsequently averaging the retrieval results.

To apply the single-band physical model, we decided to use the model parameters
and recommendations after Pope et al. [14] (see Table 1) for Landsat-8. Pope et al. [14]
assume that “it is possible to apply locally calibrated coefficients to broader areas”. The
physical model will better generalize compared to the empirical model. However, we will
also consider the local condition of the water in the Lac des Faverges, i.e., the presence of
SPM, which directly affects the water attenuation. Hence, we re-calibrate the g parameter.
Furthermore, we assume that the other two parameters are plausible values of the model
for Landsat-8 red band and independent of the water properties as such the presence of
the SPM.

Firstly, we convolved the original in-situ FieldSpec® 4 (ASD Inc., Boulder, USA)
records to the Landsat-8 OLI red band according to the spectral response function in the
range of λ = 630 to 680 nm (Barsi et al. [57]). The coefficient of attenuation g was initially set
to 0.80 m−1 according to Pope et al. [14] (based on in-situ regressed data). The albedo of the
lake bottom Ad was set to 0.228, and the irradiance reflectance of optically deep-water R∞
was set to a value of 0.0375. Given the fact that there was a higher concentration of SPM in
the lake water, we re-fitted the g parameter to reflect the local conditions. The g parameter
was fitted as a free parameter in the physical model (Equation (2)) using the least squares
method from the R-package. This parametrization provided us with a way to quantify the
change of the water attenuation in the event of the presence of SPM in the water.

3. Results
3.1. Supraglacial Lake Water Spectral Signatures

The spectral signatures of the SGL water at Lac des Faverges with changing water
depth (Figure 3) are presented in Figure 4a; the glacier ice, moraine sediment, and rock
spectra are presented in Figure 4b.

The blue lines in Figure 4a represent the measured clean water at a small pond nearby
the lake, limited to 0.4 m, while the black/grey lines represent the data measured from Lac
des Faverges, which are affected by the presence of SPM. We plotted the spectra only up to
900 nm since the water reflectance in the higher wavelengths tends towards zero.
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Figure 4. Supraglacial lake water spectra (a), ice, moraine sediment, and water spectra (b) at Glacier
de la Plaine Morte.
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The in-situ measured water depth ranged from 0.12 to 8.62 m as presented in Figure 3.
The main data set collected in the field, however, ranged up to approximately 3 m in depth.
We present the spectral curves of the water with SPM (Figure 4a) ranging from 0.12 m to
3.42 m in depth, while the spectra of 2.91 m and 3.42 m in depth overlap each other. We did
not plot the additional spectra of the higher depths up to the measured 8.62 m as there is no
significant spectral difference. The saturation effect due to the presence of SPM is evident
in the spectral curves. The concentration of SPM measured in Lac des Faverges’ water on
16 July 2019, was 48 mg/L. The transparency of the water in the lake, measured using a
Secchi disc, was determined to be 0.7 m. Other physical quantities measured in-situ in the
vertical profile were temperature, conductivity, and the total amount of solutes. Figure 5
shows that the lake was not vertically stratified at the time of measurement, satisfying the
vertical homogeneity assumption.
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in Lac des Faverges at the time of SGL measurements.

Figure 4a illustrates that the spectral reflectance of the SGL water decreases with
increasing water depth of the lake. It is noticeable that the difference between the clear
water spectra and the water affected by SPM becomes minimal from around 680 nm. The
maximum difference between the lake water spectra with suspended SPM and those spectra
at which we assume the saturation effects begin (2.91 m in depth) was then calculated as
the median at the 576 nm spectra, which corresponds to the green band of the Landsat
sensor. This spectral band theoretically provides the highest range for the model, either
empirical or physical.

Furthermore, we present the spectral curves of the clean glacier and glacier ice affected
by the deposit particles, the spectral curves of the rock near the glacier (limestone and clayey
shale), and its sediment collected at the edge of the Glacier de la Plaine Morte (Figure 4b).
Both glacier spectra are monotonously decreasing with an increasing wavelength up to
900 nm. The difference is in the absolute values of the reflectance modified by the presence
of impurities on the glacier surface. Pure ice is very weakly absorptive in the VIS spectral
region. The observed absorption in the VIS is the tail of NIR vibrational absorptions [58].
Therefore, the absorption increases with increasing wavelength from blue to red. The rock
and sediment spectra exhibit an increase, on the other hand, with the wavelength. The
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spectral effect of the SPM in the lake water corresponds to the sediment spectra up to
700 nm.

3.2. SGL Depth Retrieval by the PLSR Model

We constructed the first empirical PLSR model (abbreviated as 1) from all the collected
data from Lac des Faverges (water with SPM) up to 8.62 m, even though the saturation
effect is well visible from the plotted spectra (Figure 4a). Additionally, we constructed a
model (abbreviated as 1b) from the spectra collected from the small pond (clean water),
limited to the depth of about 50 cm. The models were cross-validated using the “leave-
one-out” method. The RMSEP indicator proved that the PLSR model 1a with the first five
components provides the best option. The lake depth values predicted against the in-situ
measured data revealed that the model does not explain the variation for depths higher
than approximately 3.0 m (Figure 6), which confirms the saturation effect visible in the
plotted spectra (Figure 4a). Additionally, it documents the effect of the SPM in the water on
empirical modelling of the SGL depth, albeit to the limited depth of the clean water. The
model 1a shows not only the saturation effect but also the much higher dispersion of the
points from the 1:1 line (Figure 6). Performance of the models is summarized in Table 2.
The model 1b was only cross validated; a testing subset was not created due to the limited
number of records.
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In the subsequent analysis, we constructed a second PLSR model (abbreviated as
model 2) limiting the lake depth readings to 3.0 m only, to evaluate the model performance
in this range and to avoid the effect of the saturation caused by SPM. The range of the depth
in the training (calibration) data set is 0.1 to 2.91 m and the range in the testing (validation)
data set is 0.34 to 2.55 m.

The RMSEP indicator showed local minima at seven components (Figure 7), while the
first two components explained most of the variation.

The first component explained 98.1% of the variation, and the second component
contributed 1.6% (Figure 8). The quality indicators of models 1 and 2 are presented in
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Table 2. The resulting model 2 scatter plot of the observed SGL depth against the cross-
validated PLSR predicted is depicted in Figure 9.

Table 2. PLSR model quality indicators.

All/Training Data Set Testing Data Set

Model RMSE (m) R2 N Components R2 RMSE
(m)

% Retrieval
Depth

PLSR model 1a (water with SPM data 1) 0.871 0.53 5 0.659 0.56 13.2
PLSR model 1b (clean water data 2) 0.155 0.96 7 NA NA NA

PLSR model 2 (limit 3.0 m depth, SPM
data subset 3) 0.163 0.93 7 0.186 0.93 4.2

1 N training data = 111, N testing data = 47, 2 N training data = 30, 3 N training data = 104, N testing data = 45.
NA—not applicable.
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Figure 9. Scatter plot of observed SGL depth against the cross-validated PLSR predicted for the
limited datasets.

3.3. SGL Depth Retrieval by the Physically Based Model

In the analysis with the physically based model, we initially ran the model (1) with
parameterization as estimated by Pope et al. [14] for the Landsat-8 sensor, red band. To
apply the single-band model, we convolved the continuous FieldSpec® 4 (ASD Inc., Boulder,
USA) records based on the relative spectral response curve for Landsat-8 [55] (Figure 10).
Although the SGL water spectral values in the range of the broad Landsat-8 red band
are monotonous and the effect of convolution is minimal, we applied this step for full
consistency, while using the parameterization of the model for the Landsat-8 band.
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Figure 10. Landsat-8 red band relative spectral response curve and samples of SGL water.

The physical model 1 predictions against our in-situ measured water lake depths at Lac
des Faverges (SPM = 48 mg/L) are presented in Figure 11 (open triangles).The predicted
lake depth values are highly overestimated given the fact that we used the g parameter
(attenuation coefficient), which was regressed for water without the presence of SPM. The
model 1 quality metrics (RMSE and R2) are presented in Table 3. In order to quantify the



Remote Sens. 2022, 14, 5988 14 of 19

effect of SPM (48 mg/L) in the lake water on the change of the water attenuation, we
re-fitted the physical model with g as a free parameter. The original attenuation coefficient
g was 0.8 m−1, while the newly fitted g equals 2.42 m−1. We fitted physical model 2 to the
training data set (Figure 11, full dot) limited to a plausible depth of 3.0 m as determined in
the previous analysis, since the water spectra became saturated at greater depths given the
presence of SPM. The model 2 quality metrics are presented in Table 3.
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Table 3. SGL physical model quality metrics.

All/Training Data Set Testing Data Set

Model RMSE (m) R2 RMSE
(m) R2 % Retrieval

Depth

Physical model 1
(original g parameter,

full data 1)
2.642 0.58 NA 3 NA 3 NA 3

Physical model 2
(re-fitted g parameter,
limit: 3.0 m, subset 2)

0.232 0.87 0.293 0.82 3.23

1 N data = 158, 2 N training data = 104, N testing data = 45, 3 NA—not applicable.

The fitted value of g = 2.42 m−1 is higher than all the values published by other authors
(see Table 1); however, it is still a plausible value for strongly absorbing waters as stated by
Philpot [41]. We evaluated the model 2 on the test data set (Figure 11, open dots).

4. Discussion

The resulting empirical PLSR model (2), and physically-based model (2) both proved
there is still a good relationship between the water reflectance spectra and the supraglacial
lake depth under the constraint of SPM in the water (48 mg/L in our case). However,
applicability of the depth–reflectance relationships was limited to a depth of approximately
3 m given the constraint. The physical principle holds true within this limit. We compared
these results to those of previous studies where in-situ or other independent reference
measurements were taken, although they used different optical sensors. Georgiou et al. [19]
calculated the RMSE between the ASTER image estimated depth and Lidar depths to be
0.7 m using a physically based model, while the RMSE dropped to 0.3 m in cloud-free areas.
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The depths across the Lidar transect varied between 0 and 4 m. Tedesco and Steiner [26]
reported RMSE of 0.59 m (R2 = 0.84) compared to in-situ (GPS/sonar) measurements,
and RMSE of 0.45 m (R2 = 0.85) for a re-fitted diffuse attenuation coefficient while using
the Landsat-7 green band. The maximum measured depth was 4.5 m. Pope et al. [14]
provided statistical quality indicators of their physically based model using the Tedesco and
Steiner [26] and Tedesco et al. [26] in-situ data (2226 unique sample points). Their results
accounted for RMSE of 0.28 m (R2 = 0.96) when using the Landsat-8 OLI red band as the
best result. The maximum in-situ lake depth measured was 5 m in their study. Our reported
results of the PLSR model 2 showed RMSE = 0.163 m (R2 = 0.93) for PLSR training and
RMSE = 0.186 m (R2 = 0.93) for PLSR model testing (Table 2). The physically based model 2
showed RMSE = 0.243 m (R2 = 0.86) (Table 3), which is in line with the previous studies,
albeit limited by the depth. The empirical model performed better than the physically
based model even after the update of the g parameter. Moreover, the empirical model based
on clean water performed better than the model constructed from SPM affected water data.

The depth limit was estimated to be around 3 m in our study, beyond which the
increase in depth cannot be modelled due to the SPM concentration 48 mg/L. However,
when revising the scatterplot of the PLSR model 1 (Figure 6), as well as the scatterplot of
the physical model 2 (Figure 11), although the data were limited to the depth of 3.0 m, the
flattening effect due to the presence of SPM starts earlier, at around 2 m. The SGL water
spectra of 2.13 m and 2.91 m in depth (Figure 4a) are close to each other, leaving very little
space for modelling the variability of about 0.8 m difference.

Given the above discussed limits of lake water depth retrieval under the presence of
SPM in the water, we also analysed the maximum detectable depth based on the general
expression by Philpot [41] for bathymetric mapping with passive multispectral imagery.
Philpot [41] states: “the maximum detectable depth may be defined as the depth at which
the difference between the observed radiance (Ld) and that for an optically deep-water
mass (Lw) is equivalent to one digital count (∆LDN = Ld − Lw)”. The maximum detectable
depth is expressed as:

zmax = −ln(∆LDN/Lb)/g. (4)

Philpot [41] describes the maximum detectable depth using several LDN/Lb ratios.
Selecting the ratio value of 0.001 from the Philpot [41] publication, Figure 12 shows the
change in the maximum detectable depth for various water attenuation coefficients. The
detectable maximal depth increases with a decrease in the effective attenuation coefficient
g. In a case where the water attenuation coefficient g = 2.42 m−1 (re-fitted value for lake
water with SPM concentration of 48 mg/L at Lac des Faverges), the maximum detectable
depth is 2.9 m. This corresponds to our previous findings described in Sections 3.1–3.3.
The maximum detectable depth would increase up to 8.91 m in the case of an attenuation
coefficient g = 0.8 m−1, using the value of g estimated by Pope et al. [14] from in-situ data
collected from Greenland, assuming there was no dissolved or suspended SPM in the lake
water. This illustrates the importance of the attenuation coefficient parameter in the model.

Another factor to consider in the context of the detectable lake depth is the sensor
used. In our study, we used the FieldSpec® 4 (ASD Inc., Boulder, USA) in-situ instrument
close to the water surface (about 0.15 m); hence, our measurements excluded atmospheric
path radiance effects, which are present in the satellite earth observation data even though
atmospheric corrections are applied.

The PLSR empirical model applied to the full hyperspectral data did not only model
the relationship between the variables but also provided the loadings per continuous
spectra. The PLSR loading values revealed the significance of the 569 and 575 nm bands for
the model. Our findings, using full hyperspectral data, suggest using green bands. Pope
et al. [14] concluded that longer wavelengths (e.g., the red band) may generally provide
more accurate lake depths, explaining that there is a larger change in net reflectance for red
wavelengths than shorter wavelengths. This contrasts with our findings, where the largest
change was calculated to be in the 576 nm spectra (green band), albeit for water affected by
SPM. Tedesco and Steiner [26] state that the red band is less sensitive to changing albedo
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values in comparison with the green band. Moussavi et al. [24] obtained more accurate
results when using green and red bands together for shallow lake areas.
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The physically based model was developed as a single-band model assuming there
is no present or little suspended or dissolved particulate matter, which would affect the
water leaving radiance. Sneed and Hamilton [42] measured SPM of 0.74 and 0.2 mg/L in
eastern Greenland. Sneed and Hamilton [42] concluded that, based on three years of melt
water analysis, they are confident that dissolved or SPM plays a minor role in accurately
determining meltwater depth in Greenland. However, they also suggested taking a larger
sample set from different regions of Greenland. Other authors assumed no influence of
SPM in the water.

5. Conclusions

In this study, we assessed the effect of SPM in SGL water on lake depth retrieval. We
collected in-situ measurements of hyperspectral and lake depth observations over an SGL
to 8 m in depth. These measurements allowed us to construct both empirical (PLSR) and
physically based models. Our lake water measurements satisfied most of the inherent
assumptions of the physically based model, i.e., the optical properties of the water were
vertically homogeneous, the lake surface was not disturbed by wind, and we did not
identify any ice bottom inhomogeneity. However, there was a non-minimal concentration
of SPM in the water.

The influence of the suspended particles in the lake water is evident in the lake spectral
curves. There is a profound absorption effect in the shorter wavelength up to about 600 nm.
However, the lake spectra still exhibit a change with lake depth. The maximum difference
between lake water spectra and changing depth was calculated to be 576 nm.

The modelling results show that there is still a good relationship between SGL water
spectra and the lake depth in the presence of 48 mg/L of SPM; however, it is limited by the
maximum detectable depth of approximately 3 m. The effect of the SPM in water affected
the depth–reflectance relationships from approximately 2 m in depth; however, the model’s
quality parameters confirmed the validity of the results up to 3 m. The RMSE values of
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0.163 and 0.243 m of our empirical and physically based models, respectively, are within
the range of previous published studies, or are even lower. The indicated depth limit was
also confirmed by constructing the physically based model as well as using the general
expression for the maximum detectable depth from Philpot [45]. However, the physically
based model attenuation coefficient g required re-fitting for the lake conditions. The value
of g increased from 0.8 m−1 (Pope et al. [14]) to 2.42 m−1 due to the presence of SPM with a
concentration of 48 mg/L.

The empirical model performed better compared to the physically based model; it
fitted better the in-situ measurements, while the physically based model is considered as
more generic and has better potential of transferability. However, the transferability would
be limited to the situations of the same water properties such as, for instance, the SPM
concentration. The physically based model does not model varying concentrations of the
water properties.

The physically based remote-sensing reflectance model for SGL depth retrieval might
be improved in the future by allowing, for instance, the simultaneous derivation of bottom
depths, albedo, and possible varying water optical properties, like the model developed by
Lee et al. [48].

The physically based model for bathymetric mapping from optical data was originally
designed with several assumptions, one of which was no presence of SPM in the water.
This study demonstrated the effect of non-zero SPM in the water on the model performance.
We conclude that the original hypothesis that non-zero SPM concentration may negatively
influence the model performance is true. Moreover, we demonstrated how it limits the
maximum detectable depth of SGL from optical data.
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