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a b s t r a c t

More than 2000 of mountain lakes covering more than 0.1 ha exist in a territory of Kyrgyzstan. Nearly

20% of them are dangerous because of instability of lake dams, frequent overflows and melting of buried

ice inside the moraine dams. According to the Kyrgyz lake inventory, 328 lakes are at risk of outburst

and 12 lakes are considered as actually dangerous. Since 1952 more than 70 disastrous cases of lake

outbursts have occurred. The majority of the endangered lakes belong to one of the three genetic types:

morainic-glacier, supraglacial and lake dammed by landslides and debris flows. Petrov, Adygine and

Koltor lakes were selected and studied in the Tien-Shan Mountains as case studies of the most frequent

genetic types of hazardous lakes. Observations were focused on the morphology of the lake basin and

the surrounding relief, outflow pattern and processes controlling the development of lake. For the

hazard assessment, evolution of glaciers and lakes was reconstructed using historical reports, aerial

photographs and satellite images.

& 2010 Elsevier GmbH. All rights reserved.
Introduction

An intensive melting of glaciers is observed in the majority of
high mountains all over the world. Melting water of glaciers
influences changes in hydrological regime of water streams and
causes overfilling of high mountain lakes basins. Dams of many
lakes are very unstable and they often burst. Mountain lake
outburst floods have been reported from the Alps (Haeberli, 1983;
Huggel et al., 2002), Karakoram (Hewitt, 1982), Himalayas
(Richardson and Reynolds, 2000; Kattelmann, 2003), Tien-Shan
(Meiners, 1997; Mayer et al., 2008), Coast Mountains (McKillop
and Clague, 2003), Rocky Mountains (Walder and Driedger, 1995;
Clague and Evans, 2000) and Andes (Clague and Evans, 1994;
Carey, 2008). Whereas inventories in most of these regions
contain hundreds of moraine-dammed, landslides and debris
flows-dammed lakes and a lot of systematic information for
hazard assessment, only few data exist for the Tien-Shan
Mountains in the territory of Kyrgyzstan. According to their
development, these lakes may be classified as tectonic, glacier,
morainic-glacier, morainic, lakes dammed by a bedrock and lakes
dammed by landslides and debris flows (Janský et al., 2006). The
majority of the endangered Kyrgyz lakes belong to one of the
H. All rights reserved.
three genetic types: moraine-glacial, supraglacial and lakes
dammed by a landslide, rockfall or debris flows (Yerokhin, 2002).

Moraine-glacial lakes develop in moraine depressions after
retreat of glaciers. The bottom and the slopes of the lake
basins are formed mainly by ice and frozen debris. Water is
cumulated on this impermeable material and in summer it warms
up to 8–10 1C, which causes a melting of frozen material. The lake
basin is getting progressively deeper and its volume is increasing
to reach dozens to millions of m3. The moraine-glacial lakes
are considered as the most dangerous type including 47% of listed
Kyrgyz lakes. One of the largest lakes of this type is the
Petrov Lake in the Ak-Shiirak massif in the Inner Tien-Shan
(Figs. 1 and 2).

Supraglacial lakes develop on the surface of glaciers. Outflow
from the lake is either surface or through the underground
channels. More rapid bursts occur in case of surface outflow. The
most dangerous are supraglacial lakes with periodical filling. They
develop in closed depressions with underground outflow where
the active basin development is already finished. When under-
ground channels get blocked up, the lake fills quickly and the risk
of outburst increases. Lower Adygine Lake in the Kyrgyz Range
was studied as a case study of this type of lake.

Lakes dammed by a landslide, rockfall and debris-flows are
characterized by a great volume and mostly underground
drainage. Lakes can be also drained on the surface, or both types
may be combined. Maximum discharge during outburst events
may reach hundreds or thousands of m3/s. An example of a lake
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Fig. 1. Localization of study sites.

Fig. 2. Petrov Lake from the moraine dam towards the Petrov glacier.

(Photo M. Šobr)

Table 1
Morphometric characteristics of Petrov, Koltor, Upper and Lower Adygine lakes.

Petrov
Lake

Koltor
Lake

Upper
Adygine Lake

Lower
Adygine Lake

Altitude

(m a.s.l.)

3733 2726 3543 3451.5

Area (ha) 390.5 22.15 3.19 0.339

Volume

(thous. m3)

60,309 1830 205.87 6.29
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the dam formed by a rockfall is the Koltor Lake on the northern
slope of the Kyrgyz Range.
Maximum

depth (m)

69.9 14.8 22.2 4.4

Mean

depth (m)

15.4 8.3 6.5 1.85

Perimeter (m) 17,030 2387 1023 266

Length (m) 2680 740 364 109

Maximum

width (m)

1880 470 151 47

Fig. 3. Bathymetric map of the Petrov Lake based depth measurements from July

2008.
Materials and methods

The lakes presented in this paper have been investigated in
summer months since 2005. Shorelines of the lakes have been
delimited using geodetic total station Leica TCR 705. Systematic
depth measurements were made by echosounder with 20 cm
resolution. Depth measurements along 29 profiles on Petrov Lake,
19 profiles on Koltor Lake and 15 profiles on Adygine Lake allow
for construction of detailed bathymetric maps of the lakes.

The description of lake outburst hazards is based on simple
glaciological, geomorphological and hydraulic principles (see
Haeberli et al., 1989; Clague and Evans, 1994) and on experience
gained from previous events. The hazard assessment follows the
procedure proposed by Huggel et al. (2004) using lake volume,
probable maximum discharge, volume and travel distance as
input characteristics. Five key indicators are defined to which
qualitative probability in the range of low, medium and high can
be assigned. The overall probability is derived from the highest
rated individual indicator (Richardson and Reynolds, 2000).

The evolution of glaciers is outlined considering available
documentation. The position of Petrov Lake glacier terminus is
reconstructed since 1957 using aerial photographs (�1:40,000
scale), SPOT panchromatic satellite image (1990 and 1999 with
10 m resolution), a QuickBird panchromatic satellite image (2003,
0.6 m resolution) and GPS mapping (2008). The fluctuations of the
Adygine glacier terminus since 1962 are reconstructed using
aerial photographs (1962 and 1988,�1:47,000 scale) and a
QuickBird satellite image (2006). Glacier positions from six
periods were digitised into the GIS, enabling a tentative analysis
of the glacier terminus fluctuations.
Results and discussion

Petrov Lake

The proglacial lake is situated in the foreground of the Petrov
glacier in the Ak-Shiirak massive, the Inner Tien-Shan (Fig. 2). The
Petrov glacier extends over 69.8 km2 and belongs to the largest
glacier in the whole River Naryn catchment. The altitude of the
lake surface is 3733 m (Table 1). Petrov Lake is formed by two
oblong basins separated by shallows and islands based on relics of
the central moraine. The northern basin is deeper (70 m) and
more extensive than the southern one (21 m; see Fig. 3). Its
eastern shore is formed by the calving terminus of the Petrov
glacier. The Petrov Lake is dammed by a terminal moraine on its
western side (Fig. 4).

The development of the lake since the beginning of the 20th
century is presented in Table 2. Historical changes of the lake
surface have been described according to expedition reports,
maps and aerial photographs. Recent development of the lake in
21st century is documented by field mapping and measurements.
The lake surface was extending since the first report presented by



Fig. 4. Longitudinal profile of the Petrov Lake with the depicted surface in case of outburst (12 times exagerated).

Table 2
Increase of the surface area of the Petrov Lake.

Year Area (km2) Annual growth (m2)

1911 0.2–0.3 –

1947 0.80 15,000–18,000

1957 0.96 11,000

1980 1.83 37,600

1995 2.78 63,000

2006 3.80 92,700

2009 4.03 77,000

Fig. 5. Seasonal water level oscillations of Petrov (a), Lower Adygine (b) and Koltor

(c) lakes.
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Kaulbars (1875) with the exception of period 1943–1957 when
the Petrov glacier front advanced (Davydov, 1927; Sevastianov
and Funtikov, 1981). The most intensive increase of the lake
surface was observed recently (1995–2006). During this period
the lake has reached an area of 3.80 km2, which represents a mean
annual increase by 92,700 m2 (Janský et al., 2009). Since 2006 the
lake surface increased to 4.03 km2 in 2009 (mean annual increase
by 77,000 m2).

The annual oscillation of the lake surface reflects changes of air
temperature. The lake surface begins to increase at the end of
April when maximum daily temperatures culminate above the
freezing point. The maximum increase of the lake surface occurs
in May as mean daily temperatures are positive and snow and ice
melting intensifies. The increase of the lake level surface and
volume lasts till the end of July. Then a progressive decrease of the
lake surface follows with the minimum at the beginning of
December (Fig. 5a).

The development of the moraine dam is controlled by the
ongoing degradation of buried ice. Ice forms the major part of the
moraine and represents the most dynamic part of the dam.
Degradation of the ice is accompanied by relief sinking, mass
movements and thaw lake formation. According to the amount
and activity of the dead ice, it is possible to distinguish four zones
in the moraine. These zones have a different rate of impact on the
process linked to the ice degradation and geomorphological
hazards. The slope declinations on those banks often exceed the
critical value, which is connected with a further deepening of the
thermocarst lakes (Fig. 6). Narrow strips of dry land between
individual lakes are constantly sinking which has caused
hydrological connecting of the lakes. An intensive development
can be observed within the largest lake in the north-east part of
the dam. In comparison with a bathymetric map from 2005, its
volume has increased from 745.569 to 775.465 m3 in 2008. The
maximum depth of the lake is 21.7 m and its average depth is
8.6 m. This lake cuts deeply into the moraine dam representing
the most weakened part of the Petrov Lake dam (Fig. 7). The
distance between the western shore of this thaw lake and the foot
of the moraine dam is only 63 m. The bottom of the lake lies about
9 m above the level of the alluvial plain of the Kumtor River below
the dam.



Fig. 6. The largest thermocarst lake in the Petrov Lake dam. 1 – outflow, 2 –

thermocarst lakes near the effluent river and 3 – the narrowest part of the moraine

dam. (Photo M. šobr)

Fig. 7. Thermocarst lakes in the moraine dam of the Petrov Lake with marked lake

level altitudes and maximum depths.

Fig. 8. Bathymetric map of the Lower Adygine Lake.
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The increase of the lake volume along with a weakening of the
moraine dam represents permanent risk of moraine failure and
lake outburst. In case of a dam rupture in the area of the largest
thaw lake about 37 million m3 of water would flow away from
Petrov Lake.

The Kumtor River flows out of the lake. It continues to the
southeast and, after about 25 km, joins with the Taragai River. The
Taragai joins with the Dzasikchi, after another 30 km, and its
name changes to the Naryn River. For this entire distance, the
rivers flow through wide mountain valleys with an average slope
of approximately 1%. Permafrost is found on the flat bottom of the
valley. The possible outburst of the lake would primarily threaten
the infrastructure of the Kumtor Gold Mine, whose toxic waste
dump is located, along with additional infrastructure, about 3 km
below the lake’s dam. Also municipalities and roads in a sparsely
populated area, in the subsequent section of river valley, will be
threatened. A dam rupture could cause a water mass of up to 13 m
in depth, representing 37 millions m3 of water, i.e. roughly 62% of
the lake’s total volume, to flood the area. In light of the
morphology of the valley, a wide flood wave that would transform
as a result of its broad outflow could be expected to form.

Lower Adygine Lake

The Lower Adygine Lake is situated on the debris-covered
glacier on the northern side of the Kyrgyz Range, the Northern
Tien-Shan. The supraglacial lake was formed since the Little Ice
Age and it is dammed by a morainic material. The maximal depth
of 4.7 m was found in the central part of the lake basin. The lake
covers 3390 m2 and has a subsurface outflow (Table 1).

The lake was formed in an about 50-m-deep and 150-m-long
thermocarst depression which is probably supplied, beside the
surface water, also by subsurface channels. The lake level and
volume of lake largely oscillates during the day – approximately
between 10,000 and 15,000 m3 (Figs. 5a and 8). The maximum
depth is reached in the afternoon. High daily oscillations of the
water level are connected with the limited capacity of the
draining channels.

Lower Adygine Lake overflowed several times in the past by
melting a subsurface gorge through a moraine dam. Drainage
events occurred when the area of the lake increased and exceeded
an unknown critical area. A progressive warming in the area
within 20th century (Dyurgerov, 1995) probably reduced the
critical area. The lake drained through a moraine onto the surface
of the valley floor within about one day. The main source of water
for the lake is the Adygine glacier. The development of the glacier
since 1962 is characterized by slow retreat of the glacier terminus
with accelerating tendency in the last years (Fig. 9). In case of a
further retreat of the glacier, we can expect an increased inflow in
the Upper Adygine Lake and after that in the Lower Adygine Lake.
According to topographic conditions up to 300,000 m3 of water
can collect in the lake basin. A large volume of water will increase
the risk of outburst floods which repeatedly formed within 20th
century.

The most likely risk is the subsurface outburst of the Lower
Adygine Lake, which could happen in the event that the runoff
canals are blocked and the lake basin fills up quickly. The danger
is increasing due to the emergence of new, small lakes in front of



Fig. 9. The development of the Adygine glacier since 1962.

Fig. 10. Bathymetric map of the Koltor Lake.
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the glacier’s head and the direct inflow from these small lakes.
First, the stream flows below the surface of the moraine complex,
for about 1.2 km. It then flows into a narrow valley, which has no
developed floodplain. A flood wave can be expected to have great
erosive power and to carry away a large amount of accumulated
material from the valley’s walls, until the confluence with the Ala-
Archa River. The average slope of this section is 22.4%; the area
has no permanent settlements. The closest settlement is Kashka-
Su Municipality, which is located about 15 km below the
confluence with the main current of the Ala-Archa. The valley
broadens here and the average slope remains fairly high–4.2%. A
dam has been built near Kashka-Su municipality (which lies at the
beginning of a massive alluvial fan), from which some of the
water is diverted into an irrigation canal. The reservoir is almost
completely filled in with dirt. No transformation can be expected
due to a flood wave; in contrast, it is more likely that the entire
accumulated area would be carried away. Farther along its course,
the river flows through fluvial deposits and after 12.8 km it enters
the outskirts of Bishkek, where a slope of 3.2% enables the
continued transport of material. In this section, the river flows
through a relatively densely populated area. Settlements in
numerous localities lie directly on the banks of the river.
Koltor Lake

The lake is situated in the valley of the Koltor River which
drains the northern slope of the Kyrgyz Range. The lake was
initially formed as a morainic lake which was subsequently
transformed by rockfalls (Yerokhin, 2003). The lake basin has a
regular shape corresponding to the valley-type of the lake
dammed by both morainic material and mass-movement accu-
mulations. The area, the volume and further hydrographical
characteristics of the lake depend on the lake surface level which
changes substantially throughout the year. With its surface at an
altitude of 2726 m, the lake area in 2005 was 22.15 ha and its
volume 1,830,000 m3 with the mean depth of 8.3 m (maximum
14.8 m, Table 1, Fig. 10).

The Koltor Lake was formed as a morainic lake and its basin
was probably at first shallow (Yerokhin, 2003). The moraine was
then covered by a rockfalls from the left side of the valley
increasing the high of the dam and depth of the lake basin.
Historical changes of the lake can be assessed using bathymetric
measurements made in 1966 (Grigoriev and Frolov, 1966). The
lake surface and volume increased slightly until 2005 as well as
the maximum depth (Table 3).

The lake is supplied by water from glaciers, seasonal snow
cover, rainfall and underground water headsprings. The dominant
part of melting glaciers is manifested in the hydrological regime
of the lake, both in the seasonal and in the daily cycle. The lake
surface level begins to rise at the end of March when snow in the
catchment begins to melt. According to Shnitnikov (1975), it rises
till the end of April by 3–4 m. The second increase of the water
level appears in the middle of June when glaciers in the spring
area of the Koltor River melt. After reaching its maximal level in
August, the water surface begins to sink in September. The
decrease continues up to November when the lake gets covered
by ice. At this time, the water surface level is some 8–10 m below
the maximum level (Fig. 5c). The daily hydrological regime of the
lake is influenced above all by melting of glaciers. The highest
water level is registered during the morning hours, when water
which has melted the day before enters the lake with a roughly 20
hours delay.

The lake dam is about 250 m wide and more than 270 m long.
The dam consists of consolidated glacial sediments and mass-
movement material. The boundary between the moraine and
younger landslides is hardly distinguishable. The dam contains
unsorted gravelly to boulder material.

The main outflow–subsurface–is situated in the north-western
part of the lake. Surface overflow occurs after sudden torrential
rains or after intensive melting of iced parts of the valley. Water
flowing over the lake dam was observed only rarely in the past. It
occurred in 1966, when a 160-m-long, 12–28-m-wide and 4-m-
deep erosion furrow was formed at the low side of the dam
(Karpov and Tsytsenko, 1966). The dam was then overflowed in
July and August 1997 (Yerokhin and Aleshin, 1997) and on the
23rd and 24th of July 2004. The latter case was caused by debris
flow which fell into the lake. The dam was overflowed up to the
height of about 30 cm above the lowest overflow point and the
erosion furrow on its outer side was deepened. The last overflow
occurred after an intensive snow melting in July 2006. The water
level rose by approximately 1.5 m and during three weeks the
volume of water in the lake increased at least by 300,000 m3.
During the overflow, water flew into the open canal in the dam



Table 3
Indicators for qualitative probability of outburst occurrence.

Petrov Lake Koltor Lake Lower Adygine Lake

Attribute Qualitative

probability

Attribute Qualitative

probability

Attribute Qualitative

probability

1. Dam type Moraine (buried

ice)

High Moraine and

landslides

Medium to high Moraine (buried

ice)

High

2. Ratio of freeboard to dam

height

0.39 Medium 0.05 High 0.3 Low

3. Ratio of dam width to height 2.32 Low 15.6 Low 6.2 Low

4. Impact of waves Frequent Medium Unlikely Low Unlikely Low

5. Extreme meteorologic events Sporadic Medium Frequent High Frequent High

Fig. 11. Dam of the Koltor Lake with erosion furrow. (Photo M. Šobr)
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crest high above the erosion furrow. Among processes which
trigger lake outbursts debris-flows are of major interest. They
occur repeatedly, mostly in fixed trajectories. The Koltor Lake is
immediately menaced by debris-flows from three slopes furrows
in the eastern valley slope. The trajectories of these furrows are
characterized by a high exaggeration (up to 400 m) and inclina-
tion (20–301). In addition, a high quantity of weathered material
is present in the source area of furrows (Fig. 11).

A subsurface type of flood can be expected, with a large
outflow, which could reach several hundred m3. The danger of a
flood event is increasing due to more intense melting of the
glaciers and the increased frequency of torrential rain. These
factors are causing the water level to rise, leading to the
emergence of a surface outlet, erosive activities which are
weakening the lake’s dam. At present there is no immediate
danger of an outburst, but the situation could change if erosive
trenches emerge or if overflow over the lake’s dam occur. The
valley is relatively wide, until the site of the subterranean outlet;
however, the average slope over a distance of 1.9 km reaches
20.4%. After this point the valley is very narrow and steep until
the confluence with the Kegety River (5.5 km, 14.3%). As the river
continues, the valley widens and the surrounding area is used for
agriculture. The nearest settlement is the village of Kegety,
roughly 17.5 km away from the lake. The valley of the Koltor
and Kegety Rivers is very sparsely populated. Only a few solitary
dwellings of forest labourers, yurts of shepherd families and the
location of a children’s summer camp, which is undergoing
reconstruction, are located in this area. At the sub-alpine level,
however, there is a significantly higher density of settlement with
a number of smaller villages, which in the event of the lake
outburst, would be threatened by a flood wave. Such a wave
would reach even the village of Kenbulun in the Chu River Valley,
which is nearly 40 km away from the lake. The flood surge would
hit incoming roads and destroy bridges and water supply pipes
located along the river.
An assessment of hazards related to glacial lake outburst

The assessment procedure for the Petrov Lake is based on the
following findings: (a) lake volume V=60.309 millions m3 (depth
measurements in 2008); (b) moraine dam with 50–70% of
buried ice ;(c) probable maximum discharge Qmax=74,783 m3/s
(Qmax=2 V/t according to Huggel et al., 2002); (d) abundant
sediments along the steep flow path; (e) probable maximum
volume of the debris flow of 480,000 m3/s (750 m3/m of sediment
per 400-m-long section of river channel and 200 m3/m per
900-m-long section); (f) probable maximum travel distance of
the debris flow of 3200 m (an average slope of approximately 3%
and rectangular-shaped channel cross section of 3 m depth and
50 m width).

The following parameters were used for the assessment of
Lower Adygine Lake: (a) lake volume V=6290 m3 (depth mea-
surements in 2006); (b) moraine dam with buried ice; (c)
probable maximum discharge Qmax=12.58 m3/s; (d) abundant
sediment along the steep flow path; (e) probable maximum
volume of the debris flow of 250,000 m3/s, assuming a section of
300 m with sediment volume per channel length of 750 m3/m
(full breach in moraine dam) and a section of 200 m with 100 m3/
m; (f) probable maximum travel distance of the debris flow of
2500 m (an average slope of 22% and triangular-shaped channel
cross section of 10 m depth and 20 m width).

The parameters for the Koltor Lake are: (a) lake volume V=1
830,000 m3 (depth measurements in 2005); (b) moraine dam
combined with landslides; (c) probable maximum discharge
Qmax=3600 m3/s; (d) stable flow path with sediment in the 300-
m-long gully at the foot of the lake dam; (e) probable maximum
volume of the debris flow 60,000 m3/s (250-m-long section
without sediment and 300-m-long section with 200 m3/m); (f)
probable maximum travel distance of the debris flow of 300 m (an
average slope of 20% and triangular-shaped channel cross section
of 20 m depth and 30 m width).

The assessment of the probability based on the above-
mentioned parameters is shown in Table 3. The state of moraine
dam is the critical factor of the potential outburst in the case of
Petrov Lake. The ratio of freeboard to dam height and extreme
meteorological events are crucial parameters in the case of Koltor
and Lower Adygine lakes. However, the assessment procedure is
of a preliminary nature because the precise conditions of potential
outburst are unknown.
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Conclusion

Global climate warming causes an intensive melting and
retreat of glaciers in mountains areas over the world. This process
is evident also in mountain regions of the Northern and Inner
Tien-Shan. Melting water of glaciers influences changes in
hydrological regime of water streams and causes overfilling of
high mountain lakes basins. The dams of many lakes are very
unstable and they often burst.

The increase of the surface and volume of the Petrov Lake
represents potential natural hazard. In case of the lake outburst,
flooding of a disposal site of highly toxic waste from the gold mine
Kumtor is a real threat. If this happens, the toxic waste containing
cyanides could contaminate a large area in the valley of the Naryn
River.

Lakes in the Adygine region are situated in front of rapidly
retreating valley glacier. If the inflow into the Lower Adygine Lake
will increase, approximately 300,000 m3 of water can accumulate
in the lake basin. Outburst of such depression would cause a flood
in the Ala-Archa valley and on the territory of Bishkek, the capital
of Kyrgyzstan.

Because of the accelerating rate of glacier melting and more
frequent intensive rains, the probability of the Koltor Lake
outburst floods increases. Two overflow events over the dam
during the last seven point at the high risk of outburst. When the
lake level surface culminates, the volume of collected water is
about 2 millions m3. This volume could cause an outburst
discharge of several hundreds of m3, which would affect the
densely populated Chuyskaya valley.
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