The later eighteenth century was a period of significant progress in the natural sciences, in Europe more widely and at Charles University in Prague. Antonín Strnad (1746–99), the subject of this essay, was an outstanding mathematician, astronomer and physical geographer in the University's Arts Faculty. This essay deals with his life, his main professional activities, methodological approaches and work in physical geography.

There were geographical lectures and related publications informing the curriculum at Charles University in Prague soon after its foundation by Charles IV in 1348. The fundamentals of mathematical geography were included in the philosophically and theologically oriented lectures of Stanislav of Znojmo and Kříšťan of Prachatice in the later fourteenth century and in the fifteenth century. The Czech traveller, philosopher and Church reformer Jerome of Prague (Hieronymus Pragensis, 1378–1416) drew upon his extensive geographical experience from Europe and Palestine in his theological sermons and works. The context of English–Czech contact is important to note here: the period following the foundation of Charles University in Prague (Goudie and Kalvoda 2007), was one in which the Czech princess Anne of Luxemburg (1366–94) became Queen of England. Jerome of Prague, the master and later professor of the Faculty of Liberal Arts (or Artistic Faculty) of Charles University, brought copies of the works of the reforming English theologian and university professor John Wycliffe (1320–84) to Prague from his studies at Oxford. Jerome was also a follower of the theological teaching of Master Jan Hus and, like him, was burnt at the stake after the Council of Constance (1414–16).

Geography was taught at Charles University within the astronomical, philosophical and historical lectures: for instance by Jan Ondřej Šindel (1375–1456), Vavřinec of Březová (1370–1437), Jan Zahrádka of Prague (1501–57), Daniel Adam of Veleslavín (1545–99) and Tadeáš Hájek of Hájek (1525–1600). The last of these, the physician, astronomer, botanist and geographer Tadeáš Hájek was the most eminent Czech natural scientist in the sixteenth century (Horák 1954). He helped promote works by Nicolaus Copernicus, especially his De revolutionibus orbium coelestium (1543). As personal physician to Emperor Rudolf II, Tadeáš Hájek had arranged the invitation to Prague extended to the Danish astronomer and geographer Tycho Brahe (Geographers Vol. 27) and for the German astronomer Johannes Kepler. At the start of the seventeenth century, geography
was taught by Martin Bacháček of Nauměřice (1539–1612). In 1724, Honorius Martin Czechura (1688–1726), professor of philosophy and theology at Charles University, published an extensive work with chapters dedicated to physical geography. An astronomical and meteorological observatory was established in 1752 at the Jesuit Faculty of Philosophy at Charles University in Prague, and meteorological measurements were taken there without interruption since 1771, being first begun by Professor Josef Stepling (1716–78). This work was continued by Professor Antonín Strnad, who, following the general reforms of Emperor Maria Theresia, was appointed professor of mathematics and physical geography in 1778 (Čornejová 1995). Following further reforms by the Emperor Josef II in 1784, natural science and physical geography became regular auxiliary subjects taught at the Faculty of Philosophy (Häufler 1967; Munzar 1996). At that time, mathematical geography and cartography were taught at the University as part of mathematics and astronomy as was commonly the case in, for example, the university curriculum in the Scottish universities and in Oxford and Cambridge in the early modern period (Withers and Mayhew 2002).

These reforms and Czech moves towards national revival in the first half of the nineteenth century set the basis for changes in the study of geography, at Charles University in particular, and in the Czech countries in general. These were brought to fruition by natural scientists in the second half of that century. In 1856, Jan Kašpar Palacky (1830–1908) lectured in regional and physical geography as docent (Reader) of geography at the Faculty of Arts. His habilitation thesis focused on aspects of the geomorphology of Central Africa. Jan Kašpar Palacky was later appointed extraordinary professor in 1885 and full professor of geography in 1891 (Horák 1954; Häufler 1967). Dionys Wilhelm Grün (1819–96) was extraordinary professor of geography at Prague University from 1876. The geographical work of Palacky and Grün at Charles University in Prague was to provide the foundation for what would become, from the early twentieth century, a thriving Geographical Institute.

Education, Life and Work

Antonín Strnad was born on 10 August 1746 in Náchod (eastern Bohemia) and acquired an extensive education as a student of the Jesuit Order in Brno, Uherské Hradiště and Olomouc (Schuster 1931; Šolcová 1999; Vlčková 1999). On 13 August 1746, he was christened as Antonín Josef Václav by his uncle, Father Jan Strnad. Antonín Strnad came from a middle-class family; his grandfather was a burgher master, his father a merchant and town councillor. The Austro-Prussian Wars and the Seven Years War caused great damage in Bohemia and the Strnad family suffered large financial losses in Náchod and, according to the land register, had to sell property there. Antonín Strnad was able to study at grammar school in Hradec Králové thanks to the financial backing of his uncle Jan Strnad, Dean in Náchod and canon of Hradec Králové Chapter. On 21 October 1763, Antonín Strnad joined the Jesuit order as a novitiate in Brno, and studied there until 1765. There, he learned rhetoric, spoke both Czech and German and was taught music. In 1766, he left for further studies to the Jesuit St. Francis Xavier College in Uherské Hradiště, where he followed courses in literature, languages and the sciences of the ancients. At that time, Jesuit colleges offered the best education in Central Europe.

In 1767 and 1768, Strnad studied philosophy and mathematics at the Jesuit College in Olomouc. In all likelihood, one of his teachers was Štěpán Schmidt (1720–82). This Jesuit mathematician had published several papers on mathematical demonstrations and systematic tables for use in architectural styles and for the construction of military...
forts, and was active, in a time of metrological reform, in converting old Bohemian and Moravian measures to new Vienna measurements. In the Jesuit programme of studies, mathematics was an obligatory subject in the second year: this mandatory mathematical education proved widely effective and was influential upon Strnad. In 1769, Antonín Strnad was selected to join the Clementinum College in Prague (founded by the Jesuits in 1562) to further develop his knowledge in mathematics and theology. He was taught there by Jan Tesánek (1728–88), doctor in theology and philosophy and professor of theoretical physics and higher mathematics at Prague University. Tesánek had introduced special lectures in higher mathematics (from 1763) and was the author of an edition of Isaac Newton's *Philosophiae naturalis principia mathematica* (1687) with his own additional commentary.

The students of the Theological Faculty of Prague University were divided into two groups: *nostri*, that is, young Jesuits, and other students, the so-called *externi*. These students lived in the St. Clement College and numbered about 60 in total. They came mostly from Bohemian bourgeois or noble families, although a few were foreign. At the faculty, the *nostri* took part in lectures, repetitions and disputations with the other students, but had their own course elements and church services in addition. During normal study days, the theology students helped to run the college, fulfilling domestic tasks such as helping in the kitchen, chopping wood, fetching water and so on. When the Jesuit order was abolished, this privileged group of students ceased to exist.

Antonín Strnad began his teaching in syntax (grammar, Greek and Latin) at the St. Ignatius Jesuit College in Jičín in 1770 (the College had been founded by Albrecht Wallenstein in 1622). Strnad spent his last two years in the Jesuit order (from 1771 to 1773) in Prague working as assistant to the prefect of astronomy, the Jesuit Josef Stepling. Stepling (1716–78) helped disseminate Newtonian precepts, experimented with electricity and, in 1748, observed solar and lunar eclipses. He also founded a mathematical library, mainly with his own funds, and was the founder of the astronomical and meteorological observatory in the Clementinum College (1751). Antonín Strnad was also employed in teaching the fundamentals of religious doctrine at the primary school in Prague, at Buben, at this time and was probably destined to take holy orders and join the Jesuit order (Richterová and Čornejová 2006). In 1773, however, the Jesuit order was suppressed by Pope Clement XIV and its possessions passed to the hands of the Habsburg monarchy. The suppression of the order was largely welcomed by the Habsburg court as it helped to limit the influence of the Church and the Jesuit financial reserves ended up in the Treasury. Former Jesuits could work as priests or enter another order. Only three of them, the mathematicians Jan Tesánek, Josef Stepling and Stanislav Vydra, were allowed to teach at Prague University. Antonín Strnad did not terminate his theology studies upon the suppression of the Jesuit order and was secularized. He was employed at the astronomical and meteorological observatory and in the mathematical museum and entered the Artistic Faculty at Prague University. He further advanced his mathematical knowledge in classes led by Stepling who taught his students not only differential and integral calculus, knowledge of numeric calculation and geometric construction, but also astronomy and elements of geography, such as meteorology.

Antonín Strnad was appointed director of the Clementinum observatory in 1781, at a time when the institution lacked much of the necessary resources, including laboratories and a fully functioning library. In addition to initiating the rescue and general repair of the Prague Astronomical Clock in 1781, Strnad worked as administrator of the Mathematical museum (1774–85) and was director of the Royal Bohemian Society of Science in 1787 and 1788. In 1784, Antonín Strnad was nominated as a member of the Meteorological Scientific Society in Mannheim. He was appointed as professor of
mathematics and physical geography (1778), dean of the Artistic Faculty (1792) and, finally, in 1795, chancellor of Charles-Ferdinand University.

In 1784, Antonín Strnad married Kateřina Marsanová, an Italian living in Prague. They had four children: Kateřina, Leopold, Antonín and Aloisie. Although the family lived modestly, they were part of the circle of leading Prague intellectuals and Czech revivalists. The Czech historian and patriot Josef Jungmann, for instance, used to think back gratefully to Strnad’s lessons and support, which helped him secure a teaching post at a grammar school in Litoměřice. Although Strnad was greatly valued throughout Bohemia and in Central Europe, he lived in modest, even poor, circumstances. At that time, the average pay of a university professor was 1,000 guilders per year; Strnad received only 600 guilders annually before 1791. Much of this he used to buy books. Given the range of his activities, this was too little to support his wife and four children: he was given a pay rise, but only after repeated entreaties to the university authorities.

Exhausted by his duties and distressed by his low income, Antonín Strnad’s health deteriorated and he developed tuberculosis. As a result of these health problems, he submitted his resignation from the post of secretary of the Royal Bohemian Society of Science, but it was not accepted. At the invitation of Prince Ferdinand Kinsky (1781–1812), he left Prague for Sazená Castle near Velvary in central Bohemia to recuperate. Unfortunately, his illness worsened over time and this, plus an acute pleural inflammation, led to his death at the age of 53, on 23 September 1799, in Sazená. He was buried in the St. Clement parish churchyard in Chržín. His death inspired many contemporaries, patriots and friends to pen speeches and literary works reminding people of his scientific, human and patriotic qualities. In the 1790s, he was painted by Jan Jakub Quirin Jahn (1739–1802), the Baroque portrait painter who specialized in paintings of Czech intellectuals. In this painting, Antonín Strnad is shown with one hand on a globe.

His successor at Prague University was Professor Alois Martin David (1757–1836) who specialized mainly in astronomy, cartography and meteorology.

Scientific Thought and Geographical Works

Antonín Strnad was important in a number of ways in promoting geography and the related sciences in Prague and in the Czech lands and beyond in the later eighteenth century. He systematically collected and studied written materials, both as valuable sources of data on the natural environment and in order to preserve wider cultural values. Strnad also tried to gather primary data on the natural environment in order to analyse them correctly and to interpret them in line with the laws of nature. He systematically published the results of his work and transmitted them through his teaching to his university students. In this, he was typical of the time in stressing the important utilitarian bases to learning and to natural philosophy (Daston 1999; Novotná and Kalvoda 2012).

His approach to research and pedagogy resulted both from his own talent and assiduity as well as from that systematic universal education obtained during his long period of studies. He drew upon his astronomical training and employment to write a number of works on astronomy and celestial geography (Pejml 1975). He outlined the significance of the observatory (Figure 1) and its geographical position in his Astronomische Beobachtung des oberen Sonnenrandes und daraus gezogene Polhöhe der hiesigen Sternwarte (1777) and his Berichtigung der geographische Länge der Stadt Prag (1786). During his regular meteorological observations, Antonín Strnad measured temperature, air pressure and humidity and magnetic declination several times a day. Thanks to Strnad’s work, meteorological stations were established outside Prague, the most
important of them being Žitnice near Litoměřice, at Telč and at Teplá Monastery near Mariánské Lázně.

Strnad was influential in building up the university’s library collections following the death of Stepling in 1778, the great part of which is now deposited in the Premonstratensian Library at Strahov (Seydl 1939). Some prints are in the library of the Astronomical Institute of the Academy of Sciences of the Czech Republic and the others are in different castle libraries. Strnad’s books show that he was abreast of contemporary thought in the natural sciences and knew particularly well the works of early modern and ancient authors. Among his library was the work of the German natural scientist Athanasius Kircher (1602–80) which dealt with optics, acoustics and magnetism (among other things), and included his \textit{China monumentis qua sacris qua profanis, nec non variis natura & artis spectaculis, aliarumque rerum memorabilium argumentis illustrata}, published in Amsterdam in 1667. This was accompanied by engraved maps of countries of the Orient and contained descriptions of missions to Oriental countries and of the Silk Road.
The Premonstratensian Library at Strahov still has a rare geographically oriented incunabulum from Strnad’s library (Kouklová 1989), namely, the work of the third- to fourth-century Greek geographer Dionisius Periegetes, his commentary to the work De situ orbis, in which he describes the Earth’s surface in hexameters. Another unique book of the former Strnad library is the oldest Latin geography book De chorographia (1521), the work of Pomponius Mela, the first century ad Roman geographer from southern Spain. Strnad’s library collections point to someone who would have been very familiar with the ancients’ geographical texts and with the work of early modern European figures. Strnad had an incunabulum of 1491 by Bartholomeus de Glanville De proprietatibus reatum published in Strasbourg. The fifteenth chapter of this book deals with regional geography and mentions Bohemia. The work of the Swiss humanist and music theoretician Heinrich Glareanus (1488–1563) was also represented in the library in three different editions (1591, 1551 and 1528) of his De geographia liber unus. The Flemish geographer, mathematician and medical doctor Rainer Gemma (1508–55) was represented by the work De astrolabio catholico liber, published in Antwerp in 1556, and which was oriented to the production and interpretation of globes. The French mathematician, astronomer and geographer Orontius Finaeus (1494–1555) – who had been professor of mathematics at the Collège de France since 1532 – was represented by his De Mundi Sphaera sive Cosmographia (Paris 1524). Antonin Strnad possessed a first edition (published in Antwerp in 1570) of Teatrum orbis Terrarum, the maps collected by Abraham Ortelius (1527–98) which was published and translated on numerous occasions. Another rare atlas in Strnad’s collection was the Atlas novus of William Blaeu (1571–1655), published in Amsterdam between 1642 and 1655. The Italian mathematician and astronomer Joannes Baptista Riccioli (1598–1671) was represented in Strnad’s collection by his work Geographiae et hydrographiae riformatae. In short, this selection of books and atlases proves that Strnad was well informed about the nature of early modern European geographical and chorographical thought, that he was able to read them in the original given his command of Latin, German and Greek and that he drew upon them in his teaching.

Antonin Strnad was also in charge of the collections in the Clementinum Mathematics Hall, and, from 1784 to 1785, he was custodian of the Mathematical Museum which had been founded in 1722 as the first public museum in the Czech lands. The aim of the Mathematical Museum was to instruct in the latest inventions and methods of science. Although the museum was called mathematical, it also possessed a large variety of different instruments and objects. According to Strnad’s complete list of instruments, the museum had optical, meteorological, hydrostatical, aerostatical, magnetical, electrical, physical, astronomical, chronological and gnostical instruments, geometrical and physical models as well as curiosities from the field, flora and fauna brought by Jesuits from their missions, stuffed birds, mechanical toys, automata and musical figures, books and pictures of eminent personalities. The Museum and its collections was one of the major attractions of Prague and counted among its visitors members of the ruling family.

Strnad lectured on practical astronomy and physical geography following his appointment to succeed his mentor, Josef Stepling. In addition to his regular lectures, Strnad organized Thursday seminars on mathematical geography, meteorology and astronomy – a classical combination in the chorographical, geographical and cosmographical traditions (Mayhew 2001). From 1781, he collaborated with several European meteorological societies, for example, those of Mannheim, Berlin, Vienna and Leipzig. In Mannheim, he published Witterungsbeobachtungen (1781–91). His astronomical observations were published in Vienna from 1786 until his death, and in the Berlin Astronomical Calendars and in the treatises of the Royal Society of Science (Munzar 1996, 2001). He observed eclipses of the Sun and the Moon, observed the moons of Jupiter and undertook other astronomical work. He published on temperature and on the mean barometric altitude of Prague in his Betrachtung über die verschiedenen Grade der
Wärme ihrem Nutzen, aus Versuchen und Beobachtungen. In 1788, he published a physical and meteorological calendar. In total, Antonin Strnad wrote 23 meteorological studies, 31 works, reports and treatises on astronomy, 4 speeches and 4 popular works; he also published translations of Josef Stepling's Latin studies.

Strnad's involvement with the restoration of the Prague astronomical clock built upon others' earlier work (Figure 2). In 1760, the mathematician and manufacturer of astronomical instruments Jan Klein (1684–1762) had tried to draw attention to this uniquely important piece of apparatus and to the necessity of its reconstruction.

Prague's civic authorities were convinced, however, that it was nothing more than scrap iron and intended to destroy it (Horský 1988). Strnad initiated a commission charged to establish the extent of damage to the device and the sum needed for its repairation. Strnad's initiative was successful. The Prague astronomical clock was repaired (for 800 golden coins) under Strnad's supervision between 1778 and 1791. In 1788, he wrote a study of the astronomical clock *Von der Prager Uhr auf dem Altstädtler Rathause aus Balbins Miscellaneen, mit Zusätzen und Anmerkungen*. Another work describing famous clock-maker's and artistic works in Prague Old Town City Hall and in Prague Observatory was published by him in Prague (1791) and in Dresden (1794). The Prague City Council later acknowledged Antonin Strnad's work on their behalf and he and his sons were made freemen of Prague in 1793.

![Figure 2: Old Town astronomical clock.](source: Prague City Museum.)
Antonín Strnad was one of the founder members of the first Bohemian Learned Society, in whose journal he published his first article on meteorology in 1775. He also worked as archivist, librarian and custodian of collections of this Society. In 1787 and 1788, Antonín Strnad was the director of the Bohemian Learned Society (the eighth such). From 1790, the body was known as the Royal Bohemian Society of Science. In total, Antonín Strnad published 18 articles in the Abhandlungen of the Royal Bohemian Society of Science, most of which dealt with meteorological subjects.

In 1790, Antonín Strnad published his Chronologische Verzeichniss der Naturbegebenheiten in Königreiche Böhmen von Jahr 663–1700 mit einigen ökonomischen Aufsätzen auf das Jahr 1790 (Figure 3). Inspired by chronicles and analysis of historical manuscripts, he described historically interesting natural phenomena, lists of comets, solar and lunar eclipses, hard winters and hot summers, crop failures, meteorite falls, floods and other catastrophes. In 1791, Antonín Strnad lectured on the phenomenon of the solar eclipse to the Royal Bohemian Society of Science in which the Emperor Leopold II took part: the emperor presented him with an honorary golden coin to mark the occasion. In the mid-1790s, however, the Royal Bohemian Society of Science dismissed Antonín Strnad from his role as administrator of what had in effect become a meteorological observation network. The decision was motivated by their suspicion that Strnad was a Freemason. Many scientists and enlightened people in his circle of associates claimed to be masons. Strnad had confirmed in writing that he was not a member of any secret or prohibited society but was dismissed nevertheless.

Antonín Strnad was involved with the popularization of science and had, since 1789, cooperated with the Patriotic Economic Society (Seydl 1947). He was at pains to stress the pragmatic and utilitarian side of science, both in his specialized and in his popular lectures. His handbook Physikalisches Taschenbuch auf das Jahr 1789 für Freunde der Ökonomie und Witterungskunde was intended for farmers. From 1749 until his death, he reviewed Housekeeping Calendars published in Czech, although his own scientific works were published in German and Latin. The first of them, published by the Czech patriot V. M. Kramerius in 1793, is at the same time a pioneering work of what we might now call agrometeorology. In his housekeeping calendars, Strnad also wrote about the position of the Sun, planets, about animals' behaviour before rain and storm, and he preferred advice what to do each month in the field, vineyard, forest and garden. Antonín Strnad occupied himself also with questions of what constituted a healthy diet and instructed lecturers on suspicious and poisonous plants and mushrooms. He wrote about beekeeping and about their treatment. In popular articles and lectures, he explained the spontaneous ignition of hay, described smut fungus and how to remove it and wrote about conservation of eggs. He also paid attention to heating with bituminous coal, the use of which (in contrast to lignite) was then only little known in society. In this respect, as well as in his meteorological work, Strnad was typical of that physiocratic, even cameralist, element within much later eighteenth-century natural philosophy and he shared, too, those ideas of economic benefit that was a feature of the landeskunde movement within the German-speaking lands of Europe at that period (Withers 2007, 74–5, 216–17).

Conclusion

Progress in physical geography, in the later eighteenth century or at other times, is a consequence of an expansion in theoretical conceptions and development in the technological means used to study the earth and the sciences of the atmosphere. We have become familiar with developments in the terrestrial, atmospheric and oceanographic sciences
Figure 3: Front page of the book by Antonin Strnad from 1790: *Chronologisches Verzeichniss der Naturgebehenheiten im Königreiche Böhmen vom Jahre Christi 633 bis 1700 mit einigen ökonomischen Aufsätzen samt der periodischen Witterung auf das Jahr 1790*, Prague [Royal Bohemian Society of Science].

Source: Geographic Library of the Faculty of Science, Charles University in Prague.
from the later eighteenth century and the need to examine this work in comparative context, over time as well as with regard to the differences between practitioners and in the curriculum (e.g. Church 2011; Elden and Mendietta 2011; Withers 2011).

The work of Antonin Strnad, perhaps especially not only in his methodological approaches but also in his work on meteorology, agriculture and physical geography and in the networks of correspondents he helped create, is illustrative of those industrious individual scholars and of the erudite correspondence that sustained the Enlightenment’s ‘Republic of Letters’ more than it is of the work of leading conceptual thinkers or synthesizers, such as that of his contemporaries the German Immanuel Kant (1724–1804), the Frenchman Georges-Louis Le Clerc, Comte de Buffon (1707–88) or the Scot James Hutton (1726–97). Strnad sought to apply mathematical and physical methods with specialized techniques and devices to determine, describe and measure the components of the natural environment. In this respect, he was typical of many speculative natural philosophers in the decades before ‘science’ became formalized in professions and in its disciplines. Strnad emphasized systematic and precise observations of natural processes and phenomena, cultivated and taught mathematics and physical geography as a part of natural sciences and published numerous papers on meteorology and mathematical geography. Widely recognized in his lifetime in the Czech lands, if overlooked until now, Antonin Strnad is now recognized as one of the most significant personalities of Charles University in Prague during the Enlightenment.

Acknowledgements

We thank PhDr Ivana Čornejová and PhDr Anna Fechtnerová for their valuable remarks on an earlier draft. The engraved portrait of Strnad is taken from Peřina and Fríč (1884).

Bibliography and Sources

REFERENCES CITED IN THE TEXT

Horák, B. (1954), Dějiny zeměpisu I. a II. Praha: ČSAV.

Pejml, K. (1975), *200 let meteorologické observatoře v pražském Klementinu*. Praha: SNTL.

Chronology

1746 Born in Náchod on 10 August
1763 Graduated from grammar school in Hradec Králové
1763 Entered Jesuit noviciate in Brno on 21 October
1764–5 Jesuit novice in Brno
1766 Studied at the Jesuit College in Uherské
1767–8 Studied philosophy at the Jesuit College in Olomouc
1769 Deepened his knowledge in mathematics at Prague Jesuit College Klementinum
1770 Taught syntax at the Jesuit College in Jičín
1771–3 Worked at the Klementinum as assistant to the prefect of astronomy; studied mathematics, Jesuit theology and was catechist in Bubny
1773 Abolition of the Jesuit Order (Antonín Strnad was not yet ordained as priest)
1774 Became assistant of the Klementinum Observatory
1774–85 Custodian of the Mathematical Museum
1775 Undertook his first recorded meteorological observations
1778 Appointed prefect of the Mathematical Museum, professor of mathematics and astronomy; taught physical geography at the university
1781 Appointed as prefect of the Observatory
1781–91 Periodically sent his meteorological observations to the Meteorological Scientific Society in Mannheim
1781 Contributed to preservation and reparation of the Prague Old Town astronomical clock
1784 Married Kateřina Marsanová
1784 Became member of meteorological scientific societies in Mannheim and Prague
1787–8 Appointed as director of the Royal Bohemian Learned Society
1789–97 Lectures in practical astronomy, physical geography and knowledge of heavens at the Faculty of Arts in Prague
1792 Became dean of the Faculty of Arts of the Charles-Ferdinand University in Prague
1795 Appointed as rector, Charles-Ferdinand University in Prague
1796 Became secretary of the Royal Bohemian Learned Society
1799 Dies on 23 September from tuberculosis and interred at the castle of the Kinský family in Sazená near Velvary at the age of 53