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ABSTRACT: High-latitude dust (HLD) depositions on four glaciers of James Ross Island (the Ulu Peninsula) were analysed. The de-
position rate on the selected glaciers varies from 11.8 to 64.0 gm�2, which is one order of magnitude higher compared to the glaciers
in Antarctica or elsewhere in the world. A strong negative relationship between the sediment amount and altitude of a sampling site
was found. This is most likely caused by the higher availability of aeolian material in the atmospheric boundary layer. General south-
erly and south-westerly wind directions over the Ulu Peninsula – with exceptions based on local terrain configuration – help to ex-
plain the significantly lower level of sediment deposition on San Jose Glacier and the high level on Triangular Glacier. X-ray
fluorescence (XRF) spectrophotometry was used to estimate the relative proportions of the main and trace (lithophile) elements in
the sediment samples. Both the sediment amount and the XRF results are analysed in a depth profile at each locality and compared
among the glaciers, suggesting long-range transport of fine mineral material from outside James Ross Island. The distribution of
aeolian sediment among the glaciers corresponds well with the prevailing wind direction on the Ulu Peninsula. © 2020 John Wiley
& Sons, Ltd.
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Introduction

Glaciers and snowfields are important areas where wind-
transported material is deposited. They serve both as storage
and an important amount of sediment material is also released
from their body (Atkins and Dunbar, 2009). Glacier surfaces are
often the source of sediment material for proglacial rivers
(Fortner et al., 2011; Bullard, 2013). The redistribution of min-
eral material throughout the glacial system is presently
understudied (Bullard et al., 2016). Previous Antarctic studies
dealing with aeolian material were localized to only a few Ant-
arctic areas, mostly the McMurdo Dry Valleys (e.g. Selby et al.,
1974; Ayling and McGowan, 2006; Speirs et al., 2008; Fortner
et al., 2011; Šabacká et al., 2012) and some sub-Antarctic
islands (Hedding et al., 2015). The importance of HLD sources
is still not fully acknowledged. The redistribution of aeolian and
fluvial material is studied, for example, in Greenland (Bullard
and Austin, 2011) and other Arctic areas (e.g. Arnalds et al.,
2013, 2016; Croft et al., 2016). The first attempt to deal with
the provenance of fluvial material on James Ross Island was
presented in Kavan et al. (2017) and a possible source of the
fluvial material from aeolian transport was identified and tested
using aeolian passive samplers in the braidplain of the Bohe-
mian Stream (Kavan and Nývlt, 2018). It was shown that ap-
proximately 30% of the wind-transported material is
deposited in the braidplain and subsequently transported by

fluvial processes. Atmospheric conditions leading to the activa-
tion of local dust sources are predisposed, especially with a
wind speed of >10m s�1. These wind speeds trigger the uplift
of local surface material – particles larger than 5μm. Mostly,
such conditions occur during the episodes of barrier winds
flowing from the south to the south-west. Apart from local dust
sources (on the scale of up to tens of square kilometres), long-
range transport from the Patagonian desert areas was also re-
corded in February 2018 (Kavan et al., 2018; Gassó and Torres,
2019). The impact of wind-induced dust/snow deposition on
small-scale landforms on the Ulu Peninsula was described in
Kňažková et al. (2020).

We know relatively little about the spatial and temporal var-
iability of the chemical composition of dust (Lawrence and
Neff, 2009). Even less is known about deposition on Antarctic
glaciers. Trace elements deposited by wind were studied only
on the surface of Taylor Valley glaciers by Fortner et al. (2011)
and by Bory et al. (2010) on the Berkner Island ice sheet, while
other works focused on the Antarctic Peninsula (Pereira et al.,
2004). However, the issue of the chemical composition of aeo-
lian deposition in Antarctica is frequently addressed in
paleoenvironmental studies (Basile et al., 1997; Delmonte
et al., 2004; Fischer et al., 2007). The chemical composition
of Antarctic snow in the Ross Sea sector was evaluated in
Dixon et al. (2013), identifying both a regional volcanic source
(Mt Erebus) and long-range sources of the deposited material.
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More attention has been directed towards the chemical compo-
sition of ice cores (e.g. Vallelonga et al., 2004) where volcanic
and anthropogenic inputs are evaluated throughout the ice
core record. The provenance of the deposited dust in
Antarctica is usually attributed to a source area in Patagonia (Fi-
scher et al., 2007; Gassó et al., 2010; Gassó and Torres, 2019)
or to South America in general (Gaiero, 2007; Gilli et al.,
2016). The characteristics of sea salt aerosol were studied at
Neumayer Station (Weller et al., 2008) and Concordia Re-
search Station (Legrand et al., 2017). Black carbon concentra-
tions are monitored on a long-term basis at Neumayer Station
(Weller et al., 2013).
In this study, the aeolian deposition on four glaciers on the

Ulu Peninsula, James Ross Island, was examined. A quantita-
tive evaluation of the sediment amount is discussed with re-
spect to the local topographic and surface wind conditions.
The amounts of the main and trace elements were estimated
and local/long-range sources are identified based on this.

Study Area

The northern part of James Ross Island, the Ulu Peninsula
(312 km2), is the largest ice-free area in the Antarctic Peninsula
region (Kavan et al., 2017). Nevertheless, a number of small
glaciers are located in the area (Rabassa et al., 1982), and some
of them have been the subject of detailed studies (e.g. Engel et
al., 2012). Some of these glaciers experienced a surface mass
gain over the period 2009–2015 of 0.57 ± 0.67 and 0.11 ±
0.37m w.e. on Whisky Glacier and Davies Dome, respectively

(Engel et al., 2018). Four glaciers were chosen to estimate the
amount of aeolian material input to their surface, and to char-
acterize its mineral composition and provenance. The impor-
tant role of snow redistribution on the spatial pattern of mass
balance was identified on a few glaciers on the Ulu Peninsula
(Láska et al., 2017; Engel et al., 2018).

The locations of the four investigated glaciers (Davies Dome,
Whisky Glacier, Triangular Glacier, San Jose Glacier), together
with the position of the snow pits and automatic weather sta-
tions (AWS), are illustrated in Figure 1. The glaciers differ in
their areal extent, elevation and orientation. The typology of
the selected glaciers also presents a notable difference. While
Davies Dome is considered to be a dome-type glacier, the
other glaciers are of valley type. The basic glacier characteris-
tics are summarized in Table I. The orientation of the glaciers
is also quite different – Whisky Glacier is oriented towards
the north, Triangular Glacier towards the west and San Jose to-
wards the south. Davies Dome as a dome-type glacier is not
specifically oriented, nevertheless the altitude profile on Davies
Dome consisting of three snow pits is oriented towards the
north.

Materials and Methods

Snow and sediment sampling

Snow pits for material sampling were dug in the accumulation
zones of the glaciers during February 2018. Even though all the
snow pits are located in the accumulation area of the glaciers,

Figure 1. Study site location within the Antarctic Peninsula region; Ulu Peninsula with AWS, snow pits and general topography of the area. [Colour
figure can be viewed at wileyonlinelibrary.com]
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they differ significantly in altitude. All were dug down to the
glacier ice surface. The snow was sampled with a plastic tube
of 5 cm diameter and was sampled from the distinctive snow
layers (i.e. with variable snow depths, to keep the layer as ho-
mogeneous as possible). The total depth of the snow pits varied
from 91 cm on the Triangular Glacier to 33 cm on Davies
Dome (the lower site near the equilibrium line). The snow pits
and sediment sample characteristics (depths and density) are
summarized in Table II. The snow samples were stored in plas-
tic zip-lock bags and transported immediately to the laboratory
facility at Johann Gregor Mendel (JGM) Station. After the sam-
ples had melted, they were filtered with the pre-weighed
Whatman 0.45-μm filters, dried in a SNOL 120/300 LSN11 lab-
oratory oven at 40°C and the filters with the sediments were
weighed (with a precision of 0.0001 g) and stored in plastic
zip-lock bags. The samples were kept at room temperature
and transported to the Polar-Geo-Lab (Masaryk University,
Brno, Czechia) for subsequent analyses.
The total sediment content measured in the snow pits on Da-

vies Dome andWhisky Glacier (Table II) was used to determine
the vertical deposition gradient based on linear regression. The
same gradient is assumed for San Jose and Triangular Glacier,
where the sediment content was determined only in one eleva-
tion. The measured sediment content differs from the linear fit
by –14.36 and 35.19 gm�2 for San Jose Glacier and Triangular
Glacier, respectively (Figure 2). The sediment deposition was
distributed over the glacier surfaces following the obtained de-
position gradient and the respective shift in the deposition
value. The mean deposition rate was determined from the de-
position grid obtained for each glacier. The total sediment con-
tent on the glaciers was calculated by multiplying the mean
deposition rate corresponding to its mean altitude and the gla-
cier surface area (Table I).

X-ray fluorescence assessment of main and trace
elements

All samples were processed to assess the relative proportions of
main and trace (lithophile) elements by means of X-ray fluores-
cence (XRF) spectrophotometry. XRF measurements of dried
sediments were conducted using a portable Innov-X System
DELTA analyser. Each sample was analysed three times for a
90-s measurement period in the soil-geochem mode. These
three measurements were averaged and the average values
were used in further analyses. The relative proportions of the
selected elements (Al, Si, K, Ca, Ti, Fe, Rb, Sr) and important ra-
tios (Al/Si, K/Ca, Sr/Ca, Rb/Sr, Fe/Ti) were used to assess the
chemical composition of the sediments, as well as the environ-
mental and geological provenance of the material. Some of the
elements were under the limit of detection (<LOD) of the mea-
surement device, pointing to very low concentrations in gen-
eral. On the contrary, highly soluble ions, such as Cl�, ClO3

�

and SO4
�, were not taken into account as most of their content

remained dissolved in the liquid phase after filtering and their
relative proportions are therefore under-represented. The re-
sults were validated by the analysis of certified reference mate-
rial CH-4 (Natural Resources Canada), because of the similar
proportions of the main elements and most of the trace ele-
ments analysed both in the snow samples as well as in the
background geological samples (volcanic and sedimentary
rocks). The comparison of XRF-based trace element propor-
tions and elemental ratios with ICP-based geochemical data
from James Ross Island Volcanic Group (JRIVG) basaltic rocks
(Košler et al., 2009; Altunkaynak et al., 2018) proved the suit-
ability of the XRF spectrophotometry for our study. Replicate
measurements of the same sample showed differences of
<1% for all assessed elements.

Table I. Studied glacier characteristics and basic sampling parameters.

Glacier San Jose Glacier Triangular Glacier Whisky Glacier Davies Dome

Sampling date 30.1.2018 14.2.2018 9.2.2018 19.2.2018
Sampling altitude (m a.s.l.) 265 210 350 510/430/270
Glacier area (km2) 0.61 0.59 2.34 6.67
Average glacier altitude (m a.s.l.) 220 185 330 400
Minimum glacier altitude (m a.s.l.) 140 110 220 0
Maximum glacier altitude (m a.s.l.) 300 310 460 510

Table II. Snow pit sediment amount parameters.

Glacier San Jose Glacier Triangular Glacier Whisky Glacier

Vertical profile

Depth (cm) Material (gm�2) Depth (cm) Material (g m�2) Depth (cm) Material (g m�2)
76–82 0.66 73–91 6.06 68–77 5.86
59–76 2.19 50–73 52.97 60–68 6.37
45–59 1.43 32–50 4.79 40–60 5.14
37–45 2.70 0–32 0.20 24–40 2.55
0–37 4.84 0–24 0.76

Total sediment amount (g m�2) 11.82 64.02 20.68
Total snow profile depth (cm) 82 91 77
Glacier Davies Dome (top) Davies Dome (middle) Davies Dome (down)

Vertical profile

Depth (cm) Material (gm�2) Depth (cm) Material (g m�2) Depth (cm) Material (g m�2)
49–34 4.94 58–42 4.18 33–0 26.50
34–17 4.99 42–28 4.99
17–0 4.79 28–7 4.58

7–0 4.63
Total sediment amount (g m�2) 14.72 18.39 26.50
Total snow profile depth (cm) 49 58 33
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Estimation of prevailing wind directions

The surface wind direction and wind speed measurements
were obtained from AWS installed on Davies Dome, Triangular
Glacier and Abernethy Flats. The wind components were mea-
sured with the same 05108 Young Heavy Duty Wind Monitor
(R. M. Young Co., Michigan, WI), with a threshold sensitivity
of 1.0m s�1 for both output parameters. Sampling and record-
ing intervals were set every 30min and data were stored in an
EdgeBox V12 datalogger (EMS, Czechia). The heights of the
wind instruments were 2.0–2.2m above the surface of Davies
Dome and Triangular Glacier AWS, and 3.0m above the
ground at the Abernethy Flats station. Observation records
were available for the period from 1 February 2017 to 31 Janu-
ary 2018. The variability of the wind parameters was analysed
and visualized with Grapher 13 software for 16 directional sec-
tors of a wind rose diagram.
Apart from these wind direction records, aerial photographs

(1979, 2006), satellite images (2013, 2017), terrestrial photo-
graphs (2017, 2018) and field observations were used to esti-
mate the prevailing wind directions on the Ulu Peninsula.
Volcanic boulders and other terrain elevations create an obsta-
cle to the wind flow and determine the position of snow accu-
mulation in the area. The prevailing wind direction conditions
were therefore estimated on the basis of snow accumulation
around the distinct terrain features (e.g. volcanic boulders). A
total of 69 wind direction points were determined and a map
of the prevailing wind direction on the Ulu Peninsula was cre-
ated (Figure 3).

HLD deposition in directional passive sampler

A passive aeolian sediment sampler was installed near the AWS
at Abernethy Flats. It was deployed for approximately 2months
and collected after the first period (28 January–28 February
2018) and second period (28 February–22 March 2018). The
passive sampler was constructed to catch the aeolian surface
sediment flux in 24 angle sectors (15°). The samples were
washed from the collectors and the amount of trapped sedi-
ment was determined in the lab at JGM Station. The samples
were filtered using pre-weighed Whatman 3-μm filter paper
and subsequently dried in a SNOL 120/300 LSN11 laboratory
oven at 40°C for 48 h and weighed (with a precision of
0.0001 g).

Results

High-latitude dust deposition

The amount of HLD found on the selected glaciers varies be-
tween 11.8 and 64 gm�2. A strong correlation between the
amount of aeolian material and altitude can be found in the
set of all snow pits apart from San Jose Glacier, which does
not fit in the relationship (Figure 2). The lowest sediment con-
centration (apart from San Jose Glacier) is found on top of Da-
vies Dome (14.7 gm�2), which is the highest sampling
locality. There were five well-distinguished snow layers identi-
fied on the Whisky, San Jose and Triangular glaciers, whereas
only three were identified and sampled on Davies Dome. Ver-
tical profiles through the snow pits reveal that the largest
amount of sediment is concentrated in the second highest layer,
around a depth of 20 cm in the case of Whisky and Triangular
glaciers. San Jose Glacier exhibits a contradictory pattern with
the maximum concentrations in the bottom layer, whereas Da-
vies Dome has relatively homogeneous sediment concentra-
tions throughout the whole depth profile (Figure 4).

The calculation of sediment amount based on the
altitude/sediment deposition relation (Figure 2) and glacier pa-
rameters – area and mean altitude (Table I) – reveals the total
amount of sediment stored in the snow on the glacier surface.
It has to be pointed out that the calculation is typically based
on a single snow pit (except Davies Dome), and is therefore
rather informative. A total of 139.2 tons of HLD is stored in
the Davies Dome surface snow, 53.2 tons in Whisky Glacier,
37.7 tons in Triangular Glacier and only 8.5 tons in San Jose
Glacier.

Main and trace element proportions and elemental
ratios

To reveal the chemical composition of the sediments, as well as
their environmental and lithological provenance, the main and
trace elements and their ratios were studied in all the samples
using XRF spectrophotometry. The proportions of the basic ele-
ments for the investigated glaciers are summarized in Table III,
and their vertical profile illustrated in Figure 5. These data were
compared with the elemental composition of principal bedrock
lithologies (Figure 6). The studied elements (Al, Si, K, Ca, Ti, Fe,
Rb, Sr) have the highest contents in the sediment samples from

Figure 2. Relation between the snow pit altitude and sediment deposition; San Jose glacier is marked with a circle, Triangular glacier with a triangle,
the other sampling sites with squares. [Colour figure can be viewed at wileyonlinelibrary.com]
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Triangular Glacier and Davies Dome – down, sample and gen-
erally lower contents in sediments collected from the other
glaciers.
Similarly, the calculated ratios (Table IV) clearly separate the

samples collected on San Jose and Whisky glaciers and Davies
Dome top site (high Al/Si and Rb/Sr ratios) from the samples ob-
tained for Triangular Glacier and Davies Dome down sites
(high Sr/Ca, K/Ca and particularly Fe/Ti ratios and vice versa,
see Table IV). Especially the high K/Ca and lower Sr/Ca indices

are similar to Santa Marta Fm. bedrock, rather than to JRIVG ba-
salts and hyaloclastites, for which negligible Rb/Sr index is typ-
ical (Table IV, Figure 6).

Prevailing wind direction and HLD transport

The dominant wind direction on the Ulu Peninsula is south-
westerly, driven by the strong barrier winds, as shown in
Figure 3. However, local differences in wind direction were
identified, especially in the area of San Jose Pass, where the
wind is strongly deflected by local topography. Prevailing
winds flow from Santa Martha Cove towards the San Jose Pass
(south-easterly direction), avoiding the massif of Lachman
Crags. A similar, but not so strong, effect of the local terrain
was identified along the eastern coast of the Ulu Peninsula be-
tween Santa Martha Cove and Cape Lachman (south to south-
easterly direction), and in the area of Triangular Glacier (west
to south-westerly), where the wind flows over the Lachman
Crags. Moreover, the western winds were observed at the
northern and southern slopes of Berry Hill.

The strong influence of the local topography of the Ulu Pen-
insula on the surface wind pattern is also apparent from the
AWS observations (Figure 3). Based on the yearly data, the most
frequent directions corresponded to southerly and south-

Figure 4. Sediment amount in the snow profile of the studied glacier.
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3. Prevailing wind directions derived from boulders and similar terrain features on the Ulu Peninsula together with wind roses at the three
AWS. [Colour figure can be viewed at wileyonlinelibrary.com]
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westerly winds. Mean occurrence frequencies of the winds
were 30.4% (Davies Dome) and 36.8% (Abernethy Flats), of
all the cases. The strongest winds (>15m s�1) were found with
frequency of 1.8 and 3.2% during south-westerly flow. In con-
trast, easterly and south-easterly winds occurred rarely at these
sites, with a total frequency of <5%. The influence of local to-
pography can clearly be seen on Triangular Glacier, where the
prevailing wind directions were mainly limited between south-
western, north-western and north-eastern sectors. The strongest
wind came from north-westerly directions, although the wind
speed never exceeded 15m s�1 at this site. The general pattern
of the prevailing southerly and south-westerly winds obtained
from the image analysis and indirect field data corresponds
very well with the surface observation mainly at Davies Dome
and Abernethy Flats AWS.
The directional passive aeolian sediment sampler confirmed

the general trend of prevailing southerly winds in the
Abernethy Flats and correspondingly also the transport of aeo-
lian material from the south. The correlation coefficient be-
tween wind direction and direction of sediment deposition
was 0.55 (p < 0.01) for the whole sampling period, only 0.18
(not significant) for the first sampling period, but rather high
for the second period – 0.78 (p < 0.01).

Discussion

The data presented in this study suggest that aeolian deposition
on the glacier surfaces of James Ross Island might originate
mainly from two rather different sources [i.e. (i) from local
HLD sources adjacent to the glaciers and (ii) from long-distance
sources transporting material in higher levels of the atmo-
sphere]. Our results provide evidence to support this

interpretation for each of the transport mechanisms by (i) clus-
tering the elemental data into two main groups and (ii) the
strong negative correlation of altitude and sediment deposition
rate on Whisky Glacier and Davies Dome. The first differenti-
ates between the glaciers (Triangular Glacier and the lower part
of Davies Dome) on which the local rock fragments (with the
dominance of Al, Si, K, Ca, Fe, Rb and Sr) are deposited, and
those glaciers (San Jose and Whisky Glacier and the top part
of Davies Dome) where mainly long-range-derived material is
deposited, which is reflected by lower proportions of elements
originating from local bedrock. The latter corresponds with the
findings of Lancaster (2002) in McMurdo Dry Valleys for the
clay and silt fraction of the deposited material.

The surface wind field over the Ulu Peninsula shows prevail-
ing directions from south to south-west for all the glaciers ex-
cept San Jose Glacier, which is also the one that differs from
the negative relationship of altitude and sediment deposition
rate. Winds modified by the local topography come through
the San Jose Pass, where its direction is from the east. This
causes a relatively small accumulation of aeolian material on
San Jose Glacier. The topographically induced wind speed
and the direction anomaly are probably also the main reasons
for limited snow accumulation on San Jose Glacier, which
has experienced the highest surface lowering since the Late
Holocene (together with the adjacent Lachman Glacier) among
the glaciers studied (Carrivick et al., 2012). In contrast, Triangu-
lar Glacier is exposed to southern to south-western winds cross-
ing the ice-free Abernethy Flats (approximately 15 km2), where
much fine-grained loose material from the Cretaceous sedi-
mentary rocks of the Santa Marta Formation and a thin Holo-
cene sedimentary cover (Mlčoch and Nývlt, 2018) is
available. Therefore, this glacier receives more than double
the amount of HLD that might be expected from the

Table III. Proportions of main and trace elements (ppm) in snow pits; proportions of some of the elements were under the detection limit (blank
spaces).

Glacier/snow pit Al Si K Ca

San Jose 17446 ± 2589 19792 ± 807 8959 ± 352 17358 ± 374
Whisky 24948 ± 2542 37945 ± 1191 11749 ± 439 25360 ± 583
Triangular 27022 ± 2523 110116 ± 2649 21499 ± 623 35859 ± 804
Davies Dome (top) 26185 ± 1128 10230 ± 471 20345 ± 572
Davies Dome (down) 63110 ± 1994 15431 ± 560 24165 ± 687
Glacier/snow pit Ti Fe Rb Sr

San Jose 5009 ± 215 1603 ± 51 4.853 ± 1.305 6.904 ± 1.290
Whisky 11279 ± 341 3090 ± 86 4.75 ± 1.310 7.772 ± 1.364
Triangular 7005 ± 284 27850 ± 487 20.723 ± 2.277 49.854 ± 2.538
Davies Dome (top) 1378 ± 56 6.746 ± 1.444
Davies Dome (down) 1650 ± 169 9621 ± 266 4.52 ± 1.515 13.357 ± 1.600

Figure 5. Relative contents of main elements in the snow profiles (Si, Ca). [Colour figure can be viewed at wileyonlinelibrary.com]
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altitude/sediment deposition relationship determined for
Whisky Glacier and Davies Dome. This suggests that in the
case of Triangular Glacier, the local rock sources contribute
more than 50% to the total HLD deposition on the surface.
Whisky Glacier and Davies Dome (except for its lower parts)
probably receive almost no local rock material because the up-
wind area of the southern Ulu Peninsula is almost completely
glaciated.
The deposition rate on the studied glaciers of the Ulu Penin-

sula varies between 11.8 and 64 gm�2, which is one order
higher than for other studied Antarctic glaciers. This is probably
related to the local topography and the resulting
available sources of material from the large ice-free area. Dun-
bar et al. (2009) observed a mean annual accumulation rate of
0.8 gm�2 year�1 on the McMurdo Ice Shelf. Lancaster (2002)
reported a similar deposition rate on four glaciers in the
McMurdo Dry Valleys (0.23–3.73 gm�2 year�1), mostly com-
posed of fine material of <50μm. Chewings et al. (2014)

observed deposition rates varying between 0.2 and 55 gm-
2 year�1 over the sea ice in McMurdo Sound. Arnalds et al.
(2014) reported that the annual aeolian deposition rates in
Iceland varied from a few grams per square metre per year up
to 800 gm�2 year�1 with an estimate of 400 gm�2 year�1 de-
position rate of volcanic dust on glacier surfaces. The annual
deposition rate on Vatnajokull Glacier in Iceland was on the or-
der of magnitude of 10–20 gm�2 year�1 (Wittmann et al.,
2017). Zdanowicz et al. (1998) identified a mean deposition
rate of 0.48 gm�2 year�1 on Penny Ice Cap in Arctic Canada.
Similar observations were reported from the subpolar or tem-
perate climate, for example Owens and Slaymaker (1997) re-
ported 13.1 gm�2 year�1 from British Columbia, Canada;
Marx and McGowan (2005) observed deposition rates between
0.25 and 143 gm�2 year�1 in New Zealand. The deposition
rate decreases significantly with altitude (e.g. Wittmann et al.,
2017), and with distance from the dust source (e.g. Arnalds et
al., 2014). Niveo-aeolian deposition was studied also by Ayling
and McGowan (2006) in Victoria Valley. The snow pit sampling
revealed a 35-year chronology of local aeolian depositions,
which was apparent due to the different accumulation rates in
the summer/winter parts of the year. In the case of the glaciers
on the Ulu Peninsula, only one annual layer was identified.

As shown in Kavan et al. (2018), the local sources of aeolian
material on the Ulu Peninsula are activated when the wind
speed exceeds approximately 10m s�1. Such a situation oc-
curred in 7.8% of the studied time during the summer season
of 2018. Similarly, Dunbar et al. (2009) reported a strong corre-
lation between storminess (winds > 35m s�1) and dust deposi-
tion rate on an ice shelf near McMurdo during the 35 years of
recording. An important limiting factor for detachment of the
local rock material from the surface is surface moisture (Wiggs
et al., 2004). Ground surface moisture gradually decreases dur-
ing the summer season and the aeolian uplift is thus more likely
to occur at the end of the summer season (Kavan et al., 2018).

The idea of long-range material transport being the most im-
portant source for glacier surface deposition on the Ulu Penin-
sula is also supported by the relative amount of main and trace
(mostly lithophile) elements, as seen for example in Figure 7,
where the relation between altitude and main element contents
is clearly visible. On the one hand, the strong negative correla-
tion of proportions of Si, Ca and K with altitude suggests that the
local sources play a more important role in the low-lying areas
of the landscape. On the other hand, the effect of local rock
material versus long-range transported material mostly sourced
from the sea (marine aerosols) could be determined by the low
Fe/Ti ratios, which are unprecedented in the geochemistry of
the local bedrock (Figure 6). The transport of siliciclastic and
partly calcareous sedimentary rocks of the Santa Marta

Figure 6. Covariant plot of elemental ratio Fe/Ti vs. K/Ca for samples
from the studied glaciers (blue and white symbols) compared with the
main geological units – sedimentary rocks of Santa Marta Formation
(green rectangles), JRIVG hyaloclastite (orange triangles) and JRIVG ba-
salts (grey triangles). [Colour figure can be viewed at wileyonlinelibrary.
com]

Table IV. Elemental ratios of mean and trace elements in snow pits.

Glacier/snow pit Al/Si Rb/Sr Sr/Ca K/Ca Fe/Ti

San Jose 0.8815 0.7028 0.0004 0.5161 0.3201
Whisky 0.6575 0.6112 0.0003 0.4633 0.2739
Triangular 0.2454 0.4309 0.0014 0.5995 3.9754
Davies Dome (top) – – 0.0003 0.5028 –
Davies Dome (down) – 0.4249 0.0006 0.6386 5.8326

Figure 7. Relation between altitude and main element contents (Si, Ca).
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Formation (Olivero et al., 1986), cropping in the Abernethy
Flats, to the surface of Triangular Glacier and partly also to
the lower part of Davies Dome is reflected by high K/Ca ratios
(Figure 6).
The lower Al/Si ratio indicates that much coarser aeolian ma-

terial is deposited on Triangular Glacier if compared with the
HLD deposited on San Jose and Whisky glaciers. The high
Rb/Sr ratios (0.425–0.703) for all the HLD on the glaciers ex-
clude the JRIVG rocks (Nelson, 1975) as the source material
for aeolian transport on the glaciers. The Rb/Sr ratios of volca-
nic rocks lie in the range of 0.007–0.040 (Košler et al., 2009;
Altunkaynak et al., 2018). Higher values are found in the sedi-
mentary rocks of the Santa Marta Formation (0.235–0.300, see
Figure 6). Furthermore, the K/Ca ratio is indicative for differen-
tiation between Cretaceous and volcanic rock sources. The
geochemical data reported by Košler et al. (2009) and
Altunkaynak et al. (2018) show the K/Ca ratio being in the
range 0.063–0.485, coinciding with our XRF-based K/Ca ratio
of JRIVG basalts (0.040–0.355) and hyaloclastites (0.088–
0.424). This is similar to the values calculated for aeolian depo-
sition on the studied glaciers (0.463–0.639), but the samples
from individual glaciers differ in Fe/Ti ratio, as can be seen in
Figure 6. However, our calculated Rb/Sr and Fe/Ti ratio values
(Figure 6) imply that the aeolian material deposited on Triangu-
lar Glacier and the lower part of Davies Dome is a mixture of
local sedimentary rocks and marine aerosols.
In contrast, higher values of Rb/Sr ratios found for San Jose

andWhisky glaciers and the top-site sample from Davies Dome
correspond with long-range transport enriching the deposited
material from the marine environment. This is also connected
with Sr and Fe depletion in marine-sourced material when
compared with geological material. Such material can be
brought from HLD sources on the Antarctic Peninsula or even
more distant sources. Fortner et al. (2011, 2013) identified aeo-
lian deposition on glacier surfaces as a dominant process
enriching the local freshwater ecosystems with trace elements.
A trajectory analysis showed the source areas for deposition

at Syowa Station (located in Queen Maud Land, East
Antarctica) being in South America and Africa, suggesting that
long-range transport is not an exceptional event in Antarctica.
Similarly, Patagonia was identified as a source area of dust de-
position on the Ulu Peninsula during the 2018 summer season
(Kavan et al., 2018; Gassó and Torres, 2019). High concentra-
tion of Na and Cl was found from the injection of sea-salt par-
ticles during transport (Hara et al., 2010). Lawrence et al.
(2010) reported higher contents of Ca and K in snow samples
with dust compared to snow without any apparent dust layers,
suggesting the concentration of these elements is a useful proxy
for the presence of atmospheric deposition. In accordance with
the findings of Vallelonga et al. (2004) from Law Dome,
Antarctica, a positive correlation (r2 = 0.91) between Ca–Sr
concentrations in all the snow pit samples was found, suggest-
ing that marine aerosols are the dominant sources of deposited
material. The distance from the sea on Law Dome of about
100 km and the presence of no local dust sources in the vicinity
clearly indicates the importance of long-range transport from
distant sources, which could be valid for most sites in
Antarctica.
Snow samples from distinct layers of the snow profile have

been sampled in order to detect year-on-year variability in the
concentration of main and trace elements. However, the rather
heterogeneous vertical profiles (all but Davies top site – see
Figure 4) of the snow pits only indicate a horizon rich in aeo-
lian dust in the upper part of the profile. This spatial pattern in
concentration corresponds well with the frequently reported
findings (e.g. Drab et al., 2002) describing typical year-on-year
fluctuation in the concentration of main elements. This means

that samples from only a single year were available from all
the snow pits, probably except the topmost snow profile from
Davies Dome.

Conclusions

HLD deposition and concentration of main and trace elements
was examined on four glaciers on the Ulu Peninsula, James
Ross Island. On this basis, important roles of short-distance
and long-range sources of deposited material were identified.
The spatial pattern was modified by the local topography and
consequently by the prevailing local wind properties. San Jose
Glacier received a relatively small amount of aeolian material
(11.8 gm�2), whereas Triangular Glacier exhibited more than
double the deposition rate expected (64 gm�2). Such a differ-
ence in deposition rate is a result of the specific location of
each glacier with respect to the prevailing winds and position
of local HLD sources. The most important local HLD source
of about 15 km2 in the Abernethy Flats was identified and sup-
ported by means of the geochemical analyses. The deposition
rate of tens of grams per square metre is approximately one or-
der higher than that of most of the Antarctic sites. Aeolian de-
position on glaciers can have a significant effect on the
glacier itself (through albedo), on the chemistry of water
streams originating from the melting of these glaciers and con-
sequently on the ecosystem connected to these streams.
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