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AbstrAct: Märker M., HocHscHild V., Maca V. & Vilímek V., 
Stochastic assessment of landslides and debris flows in the Jemma basin, 
Blue Nile, Central Ethiopia (IT ISSN 0391-9838, 2016)

In this paper we evaluate a stochastic method to assess the spatial 
distribution of landslide and debris flow processes in the Jemma 
basin, Central Ethiopia. The Jemma basin is draining the highlands 
(max. 3.676 m a.s.l.) northeast of Addis Ababa towards the Blue Nile. 
The basin is characterized by a deeply incised stratigraphy made up of 
volcanic deposits like flood basalts and tephra. Hence, gravitational mass 
movements as well as water driven erosion processes occur, documented 
by the respective forms. We mapped these features using Google Earth 
images, aerial photo interpretation and fieldwork. The information about 
the spatial distribution of landslide and debris flow forms was taken as 
dependent variable in the stochastic modelling approach. Moreover, we 
performed a detailed terrain analysis to derive the independent variables. 
We applied two different stochastic modelling approaches based on i) 
Boosted Regression Trees (BRT) and ii) on an Maximum Entropy Method 
(MEM) to predict the potential spatial distribution of landslides and 
debris flows in the Jemma basin. The models are statistically evaluated 
using the training data and a set of performance parameters such as the 
area under the receiver operating characteristic curve (AUC). Variable 
importance and response curves provide further insight into controlling 
factors of landslide and debris flow distribution. The study shows that 

both processes can be perfectly identified and distinguished. The spatial 
distribution of the predicted process susceptibilities generally follows 
topographic constraints. Model performance parameters show better 
results for BRT, that outperforms MEM. However, MEM results are 
quite robust and hence are used for the spatial prediction of process 
susceptibilities. 

Key Words: Landslides, Debris flows, Boosted Regression Trees 
(BRT), Maximum Entropy Method (MEM), Spatially explicit prediction, 
Ethiopia, Blue Nile, Jemma Basin.

INTRODUCTION

The Ethiopian highland is severely affected by land 
degradation due to soil erosion and mass wasting processes. 
Generally, Ethiopia show the highest degradation rates in 
Eastern Africa (de Mûelenaere & allii, 2014; Gessesse & 
allii, 2014; Lanckriet & allii, 2014, Adugna & alii, 2015) and 
particularly the highland, is facing new strategies to combat 
desertification (Mekonnen & allii, 2015). Especially after 
long dry periods intensive rainfall events wash away fertile 
topsoils and trigger debris flows and landslides, particularly 
if no prevention methods are applied. Hence, agricultural 
production is at risk and thus, food security is a mayor 
issue for local population. In order to prevent degradation 
processes in terms of mass movements, susceptible areas 
have to be identified and prevention measures established. 
In the rural areas initiatives have been conducted to fight 
mass movements in small catchments or on smaller local 
units. However, to assess the incidence of different mass 
wasting processes on catchment scale more sophisticated 
techniques must be applied. In order to derive information 
on the probability distribution of these processes statistical 
methods may yield valuable results. 

In the recent past several authors categorized the 
approaches utilized in susceptibility assessments as analytic, 
heuristic, deterministic and stochastic (e.g. Guzzetti & alii, 
1999; Brenning, 2005, Lombardo & alii, 2014). In terms 
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of stochastic approaches, several statistic and/or data 
mining techniques were applied, having certain advantages 
and disadvantages (e.g. Bai & alii, 2011; Märker & alii, 
2011; Akgün 2012; Vorpahl & alii, 2012). Commonly, the 
methods exploit a set of independent variables, which 
play the role of predictors, to produce a spatial probability 
distribution of the dependent variable also called target 
variable. Multi-variate statistical analysis compares the 
relationship among multiple variables simultaneously. In 
case of mass movements such as debris flow and landslide 
processes the relative influence among all thematic layers 
of driving factors is assessed. One of the multi-variate 
statistical approaches is the discriminant analysis method. It 
shows the relative impact of every variable to slope stability 
in the form of a discriminant function. The higher the 
coefficient, the higher is the probability that a landslides 
and/or debris flows may occur. 

The knowledge about the spatial distribution of 
the susceptibility to certain mass movement process is 
a prerequisite for the assessment of these processes by 
physically based models, scenario analyses and studies of 
systems sensitivity (e.g. Märker & alii, 2008, Märker & alii, 
2011). We define the susceptibility as a certain landscape 
potential or disposition to develop a specific mass movement 
process. Having information on the distribution of the 
debris flow and landslide processes in a characteristic test 
area (e.g. mapped from aerial photographs or Google Earth) 
we can express the susceptibility to certain processes as a 
combination and specificity of particular driving forces.

Following this hypothesis we assessed the debris flow 
and shallow landslides in the Jemma basin. Therefore, we 

utilized two stochastic approaches taking into account 
the relevant environmental information to determine the 
susceptibility to specific mass wasting processes. 

STUDY AREA 

The study area is located in the Amhara region 100 
km Northeast of Addis Ababa, Ethiopia (fig. 1). Basically, 
it comprises the basin area of the Jemma River with a 
drainage area of 15.247 km². The elevations difference is 
ranging from 770-4.265 m a.s.l. The surface topography 
can generally be divided into three zones: gorges of Jemma 
River and tributaries (770-2.500 m a.s.l.); flat plain situated 
on basalt and ignimbrite plateaus (2.500-3.000 m a.s.l.); 
mountain peaks and ridges (3.000-4.265 m a.s.l.). The 
main valley is steeply incised into Tertiary volcanic rocks 
and Mesozoic sediments (sandstone, mudstone, limestone, 
gypsum) and at the very bottom into Paleozoic sandstone. 
The climate depends mainly on the elevation: the tropical 
zone cover only a limited area at the bottom of deepest 
gorges while most of valley slopes have a subtropical 
character. Flat plains have temperate climate and only the 
highest mountains and ridges are slightly cooler.

The average yearly rainfall in the study area varies 
between 800 and 1.300 mm a−1. A clear pattern of high 
inter-annual variability is also evident. The regime 
includes a dry season in April with the main wet season 
between June and September with the peak in July. A thin 
vegetation cover characterizes the area. Main landuse is 
rain fed agriculture with maize, wheat, sorghum etc. as 
well as pasture. Close to the villages Eucalyptus plantation 

 

Fig. 1: Study area of the Jemma basin 

 

Fig. 1 - Study area of 
the Jemma basin.
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are present. Soils are mainly consisting of Andosols on the 
plateau areas and Regosols and Lithosols on the steeper 
slopes according to the Soil Atlas of Africa (Jones & alii, 
2013). Zvelebil & alii (2010) carried out a first mapping and 
zoning of vulnerability to mass wasting processes based on 
geophysical, geological and hydrogeological information

MATERIALS AND METHODS

Data set

The dataset applied in the modelling consists of 12 
parameters: i) topographic wetness index (TWI; Beven & 
Kirkby, 1979), ii) stream power index (Moore & alii, 1991), 
iii) transport capacity index (Moore & alii, 1997), iv) slope 
after Horn (1981), v) aspect, vi-viii) curvature (plan, profile, 
combined), ix) relief elevation above thalweg (Olaya & 
Conrad, 2008), x) upward flow length after Tarboton 
(1997), (xi) relative slope position after Böhner & Conrad 
(2008) and xii) valley depth following Conrad (2007). The 
topographic indices were calculated from a digital elevation 
model (DEM) with 30 m cell size based on the Shuttle 
Radar Topographic Mission (SRTM). In February 2000 a 
series of Synthetic Aperture Radar (SAR) images was taken 
by a Space shuttle with the aim to build a high resolution 
topographic database of the entire world. Here we used 
the one with 30 m resolution (1-arcsec) that was acquired 
in the X-band. The major advantage of radar techniques 
and in particular of the resulting SRTM-X DEM is that 
microwaves are capable to penetrate clouds and to some 
degree also the vegetation cover. Even though the SRTM-X 
DEM offers no global coverage, it covers the study area 
completely. Primary and secondary topographic attributes 
as cited above were then calculated from the DEM with 
Saga GIS based on Wilson & Gallant (2000) and Hengl & 
Reuter (2009). 

The dependent response variable was coded in two 
classes namely shallow landslides and debris flows showing 
different levels of geomorphic process dynamics. The 
two classes were mapped based on Google Earth (GE) 
using a CNES/Astrium SPOT 6 images with 1.5m ground 
resolution. Class zero was attributed to landslides and 
class two to debris flows. We mapped an area within 
the Jemma basin covering a section from the so called 
Portuguese bridge near the locality Fiche and the village 
of Deneba ca. 35 km upwards the Jemma basin form the 
Portuguese bridge. The training data set was extracted 
using a randomised sampling scheme covering 15 percent 
of randomly drawn raster cells for each class (N = 1097). 
These samples were extracted from the Jemma River basin 
where geo-referenced information on the present debris 
flows and landslides was available. 

Statistical modelling

Methods such as artificial neural networks (Kohonen, 
1984), logistic regression (Hosmer and Lemeshow 2000) 
or classification and regression trees (CART, i.e. recursive 
binary partitioning into regions that are increasingly 

homogeneous with respect to the class variable; Breiman & 
alii, 1984; Breiman, 2001 De’ath and Fabricius, 2000, De’ath, 
2007) have been applied in a wide range of geomorphologic 
and pedologic studies in the recent past (Moore & alii, 1993; 
Gessler & alii, 1995; Paruelo and Tomasel, 1997; Mertens 
& alii, 2002; Brenning, 2005; Grimm & alii, 2008, Vorpahl 
& alii, 2012). These methods allow for deriving transparent 
algorithms that can be assessed by applying a range of 
performance criteria. In this study we tested two different 
explorative statistical models: i) a classification regression 
tree approach and ii) a mechanical statistics method. The 
application of two models with the same dataset guarantees 
the achievement of consistent and robust modeling results.

The first method is based on stochastic gradient boosting 
(Salford Systems implementation: TN, cf. Friedman, 1999, 
also called Boosted Regression Trees (BRT), Elith & alii, 
2008). Gradient boosting constructs additive regression 
models by sequentially fitting a simple parameterized 
function to current ‘pseudo’-residuals by least squares at 
each iteration. The pseudo residuals are the gradient of the 
loss function being minimized, with respect to the model 
values at each training data point, evaluated at the current 
step (Friedman, 1999). Practically, the method derives 
several hundreds to thousands of small trees (in our case 
fixed to a maximum of six nodes). Each tree is devoted to 
contributing a small portion of the overall model whereas 
the final model prediction is constructed by adding up 
each of the individual tree contributions. The advantage of 
the methodology is that it is not sensitive to data errors in 
the input variables. 

The second modelling approach originates in Bayesian 
statistics (Jaynes, 1957) and is called Maximum Entropy 
Method (MEM). Basically, MEM estimates a distribution 
function of the predictors by finding a distribution of 
maximum entropy for the single predictors that is closest to 
uniform (Vorpahl & alii, 2012). Furthermore, the expected 
value of each predictor under the estimated distribution 
has to match its empirical average (Phillips & alii, 2006). 
The advantage of MEM is, that it can handle presence only 
data, thus it does not need classified variables or a binary 
presence-absence dataset.

For this study, we run the model with the following 
parameters: The entire dataset (N = 1097) used for the 
modelling was separated into a training fraction and a test 
fraction (Ntrain = 932, 0.85 of N; and Ntest = 165, 0.15 of 
N). The separation was performed by randomly selecting a 
sample of cases from the entire data set. In both approaches, 
the maximum number of trees to use was 2000. The TN 
model uses a regression model with the Huber-M loss 
function.

Model evaluation

The BRT and MEM models were applied to predict the 
landslides (class 0) and debris flows (class II) of the entire 
basin in a spatially explicit way. The models were applied 
to the entire data set containing all explanatory variables 
for the entire basin. In the last step, the resulting tabulated 
data – or to be more precisely, the predicted probabilities 
of each pixel to fall into one of the two classes – were post-
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processed to produce susceptibility maps for each erosion 
process class using a GIS. In order to evaluate the models’ 
predictive performance besides classification matrices, we 
calculated the receiver operating characteristics (ROC) 
curves for each class and both models for training and test 
data. In an ROC curve the true positive rate (sensitivity) 
is plotted over the false positive rate (1-specificity) for all 
possible cut-off points (Swets, 1988). Each point on the ROC 
plot represents a sensitivity/specificity pair corresponding 
to a particular decision threshold. A perfect discrimination 
between positives and negatives has an ROC plot that 
passes through the upper left corner (100% sensitivity, 
100% specificity), so that the area under the ROC curve, 
AUC, is 1 (cf. Reineking & Schröder, 2006). Therefore, the 
closer the ROC plot to the upper left corner, the higher 
the overall accuracy of the test. According to Hosmer 
& Lemeshow (2000), AUC values exceeding 0.7/0.8/0.9 
indicate acceptable/excellent/outstanding predictions.

For improving model interpretation, we calculated 
predictor variable importance ranking all predictors due 
to their contribution to the final models by calculating the 
improvements of all splits associated with a given predictor 
across all trees in the model. Moreover, we analysed 
partial dependency plots as univariate response curves 
by calculating non-parametric loess regressions from 
predicted values for each continuous predictor variable as 
a basis for interpreting the effect of predictors. Finally, we 
illustrated the spatial patterns of prediction results using 
erosion susceptibility maps. 

RESULTS AND DISCUSSION 

We applied the BRT and MEM models training them 
with the 85% of data selected randomly from the entire 
dataset (Ntot=1097). The remaining test sample fraction of 
15% (Ntest= 165) was used to test model performance. The 
latter are shown as ROC integral or AUC for the specificity/ 
1-sensitivity plots shown in figure 2 and 3. As illustrated 
in fig. 2 the BRT approach shows very high accuracy for 
the training data with ROC integrals of 99%. The test data 
set also reveals an outstanding model performance of 97% 
for both processes. Generally, the good performance of the 
BRT method is also reported by other studies like Vorpahl 
& alii (2011), Märker & alii (2012) or Brenning (2005). 

The MEM approach yield also respectable model 
performances as illustrated in fig 3. The AUC values for 
the train data according to Hosmer & Lemeshow (2000) 
are acceptable having values of 0.74 for debris flows and 0.7 
for landslides. Moreover, also the train data set show nearly 
acceptable values with AUC values of 0.69 for landslides 
and 0.67 for debris flows. 

The variable importance yield insights into the most 
relevant topographic indices driving landslide and debris 
flow distribution. We excluded the aspect from the 
stochastic modelling procedure to avoid a bias due to the 
fact that mainly slides and debris flows on the north and 
south facing slopes have been mapped. Moreover, other 
authors like Ayalew & Yamagishi (2003, 2004) or Asfaw 
(2010) stated that aspect do play a minor role in the spatial 
distribution of landslides.

Table 1 shows the combined variable importance for the 
BRT model for both processes. The indices valley depth, 
vertical distance to river network, and catchment network 
base level play the dominant role triggering both processes. 
These parameters indicate a strong stratigraphic/ lithologic 
influence since the study area is characterized by prevailing 
horizontally stratified lithological layer and hence, the 
he processes seem to be correlated to specific geological 
formations and/ or a certain connectivity to the drainage 
network. Catchment area and slope are the parameters 
mainly involved also in physically based models like 
SINMAP (Pack & alii, 2005).

For the MEM approach we present the variable 
importance separately since there are distinct 
differences between both processes. Table 2 shows the 
variable importance for debris flows whereas Tab. 3 the 
variable importance for landslides. For both models 
slope is the most important variable but thereafter we 
find particular differences. The debris flow distribution 
are more related to valley depth and topographic 
wetness index, hence indicating pre-existing linear 
incisions as well as surface runoff accumulation areas. 
Whereas landslides are related to catchment area and 
channel network distance representing a stratigraphic 
relation or undercutting processes creating instabilities 
at the base of the slopes. As already stated above slope 
and catchment area are also used in physically based 
landslide models as a proxy for soil or substrate weight 
and potential shear stress. 
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Fig. 2 - Receiver Operator Curve 
(ROC) diagrams. Left: landslides 
(class 2); right debris flows (class0). 
Blue line training data red line test 
data. AUC landslides train 0.99 
(test 0.975); AUC debris flow train 
0.99 (test 0.975).
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The response curves shown in fig. 4 represent a Maxent 
model created using only the corresponding variable. 
These plots reflect the dependence of predicted suitability 
both on the selected variable and on dependencies induced 
by correlations between the selected variable and other 
variables. Fig. 4 illustrates the response curves of the three 
most important parameters of the MEM model runs for 
debris flows and landslides. Landslides seem to be related 
to higher slope degrees than debris flows. Medium valley 
depth and medium to high TWI values depict debris flows. 
Instead, catchment areas up to 18 ha (2.000 pixel * 900 m²) 
and distances to channel network between 1.5 and 2 km 
seem to characterize high landslide susceptibilities.

As shown by Lombardo & alii (2015) and Vorpahl & 
alii (2012) BRT normally outperforms the MEM approach. 
However, it was reported that if the model is used for spatial 
prediction MEM is performing quite robustly. Hence, 
we show the spatial distribution of the susceptibility to 
landslides and debris flows using the MEM approach. 
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table 1 - Variable importance of BRT model.

VARIABLE SCORE

VALLEY_DEPTH 32.8

VERTICAL_DISTANCE 31.0

SLOPE 30.2

CHANNEL_NETWOK BASE LEVEL 26.5

ANALYTICAL HILLSHADING 25.9

CATCHMENT_AREA 24.4

RELATIVE_SLOPE 21.4

CROSS_SECTION 18.2

SRTM30_JEMMA 17.7

LONGITUDINAL CURVATURE 17.6

TOPOGRAPHIC WETNESSINDEX 17.2

LS_FACTOR 14.1

CONVERGENCE INDEX 13.6

table 2 - Variable Importance for debris flows.

VARIABLE % CONTRIBUTION

SLOPE 29.0

VALLEY DEPTH 24.6

TOPOGRAPHIC WETNESS INDEX 10.5

CROSS-SECTIONAL CURVATURE 10.4

VERTICAL DISTANCE TO CHANNEL 
NETWORK 8.9

CATCHMENT AREA 7.0

LONGITUDINAL CURVATURE 3.5

CHANNEL NETWORK BASE LEVEL 3.4

RELATIVE SLOPE POSITION 1.7

CONVERGENCE INDEX 0.6

LS FACTOR 0.4

table 3 - Variable importance for landslides.

VARIABLE %  CONTRIBUTION

SLOPE 32.8

CATCHMENT AREA 20.4

CHANNEL NETWORK BASE LEVEL 17.8

VERTICAL DISTANCE TO CHANNEL 
NETWORK 16.2

VALLEY DEPTH 9.3

RELATIVE SLOPE POSITION 0.9

LS FACTOR 0.7

CONVERGENCE INDEX 0.6

CROSS-SECTIONAL CURVATURE 0.5

TOPOGRAPHIC WETNESS INDEX 0.5

LONGITUDINAL CURVATURE 0.2
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Fig. 5 illustrates the spatial distribution of the predicted 
susceptibilities for debris flows whereas Fig 6 highlights 
the spatial prediction of the landslide susceptibilities. 
We observe that debris flows (fig. 5) are more related to 
drainage lines which were already stressed by the variable 
importance. Areas in yellow indicate high susceptibilities 

for debris flows especially in the lower slope areas and larger 
tributaries with higher runoff concentration potential. 

Figure 6 highlights the areas prone to landslides in 
the yellow orange colours. It can be noticed that high 
susceptibilities for landslides are concentrating in certain 
slope positions related to specific stratigraphic layer. 

Fig. 4 - Response curves of the three most 
important variables for debris flow (left) and 
landslides (right) using MEM.

Fig. 5 - Spatial distribution of debris 
flows using the MEM approach. High 
susceptibilities in red/yellow, low 
susceptibilities in green/blue colours. Yellow 
dots: landslides data set; White dots: debris 
flow data set.

 

 

Fig.  5:  Spatial  distribution  of  debris  flows  using  the  MEM  approach.  High  susceptibilities  in  red/yellow,  low 
susceptibilities in green/blue colours. Yellow dots: landslides data set; White dots: debris flow data set  
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Actually, two zones with higher landslide potential can 
be identified: The first one close to the escarpment of the 
Jemma canyon might be also affected by rockfalls due to 
very steep slopes and a second area which is further down 
the slopes and can be related to less steep slopes and 
maybe substrates with higher clay content that are present 
in the stratigraphy and of probable lacustrine origin. Since 
stratigraphy seems to play a role for the landslide potential 
in further project steps detailed stratigraphic information 
should be taken into account.

CONCLUSIONS 

In this study we conducted a stochastic analysis using a 
Boosted Regression Tree method (BRT) and a Maximum 
Entropy Method (MEM) to analyse the main driving factors 
characterized by topographic indices to assess landslide 
and debris flow occurrence in the Jemma basin in Central 
Ethiopia. Therefore, we mapped the debris flow and 
landslides forms in a small tributary of the Jemma catchment 
showing the typical characteristics of the entire basin. The 
mapping of forms was performed using GE high resolution 
images. The resulting dataset was divided into train and 
test data in order to evaluate the performance of the chosen 
BRT and MEM approaches. The analysis showed a general 
excellent model performance with very high AUC values 
for BRT and acceptable values for the MEM approach for 
both, debris flows and landslides. Variable importance 
reveal that valley depth, channel network base level and 
slope play a major role in terms of variable importance, 
whereas especially MEM yield particular parameters to 
distinguish between landslides and debris flows. Slope and 
channel base level show high correlations and hence seem 
to trigger landslides and debris flows. Finally, the spatial 

distribution of landslide and debris flow susceptibilities 
demonstrate a specific spatial pattern that is clearly related 
to stratigraphic units and the drainage system. Only certain 
slopes and stratigraphic units are able to build up specific 
slope morphologies and drainage patterns allowing the 
accumulation of material that in turn is subject to these 
mass movement processes. 
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